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FOREWORD

Educators and the public generally are insreasingly socal aaout a phenome-

non which, the) claim, is becoming a national scandal. secondary school stu-
dents ige less knowledgeable about and less interested in higher mathematics Some

people hase suggested we need to experience a national shock, on the order of

the 1957 shoLk of the Skis let launch of Sputnik. to remind us of the salue to our

nation of mathematics and science education.
At the same time. attrition of the mathematics teaching corps is causing con-

cern. The Loncern is magnified by the realization that fewer university students
plan to become mathematks washers. In order to reverse these trends, several plans

has e been tried, ranging from pay ing mathematics teachers higher salaries to re-

training other teachers to eqmp them to teach secondary school mathematics
This gloomy pisture becomes bleaker still when we realize that, according to

the National Assessment f Edusational Progress, while mathematics is the fit-
some subject of 9-year-olds surveyed, 1: is theleast-prefened subject among 17-

year-okls. What can be done to alter these conditions?
Ohs iously. no single plan will change the direction of mathematics teaching

and learning. However. seseral initialises sponsored by the federal government

are _being undertaken to mitigate the current situtation. The National Institute of
Edwt atwn has supported and Lontinues to support research projects which have

studied et feLtis e strategies for leashing and learning in mathematics Although

much remains to be done in the area of research, thc crisis in secondary school

mathematics makes it essential that we focus Larefully on dissemination of ex-

isting research information.

What Is RDIS?

The Research and Des elopment Interpretation Sen ice (RDIS). a project funded

by the National Institute of Education, attempts to bring to teachers the research

which they need, 13) focusing our efforts on answering questions which teachers

pose. we hope to help teachers meet their most pressing needs. Of course, re-
search information requires interpretation before it can be most effectively used

This interpretation is required for several reasons:
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Researchers are not always cleat about the implications of their research for

the classroom.
For a paincular topic it is often difficult to get a comprehensive view 'Of all

the research that bears on that topic.
To date. RDIS. throtigh its Research Within Reach series. has brought re-

search to teachers in several basic skills areas elementary school reading. ele-

mentary school mathematics. oral imd w ritten communication. and, now, in

secondary school mathematics.

flow Does RDIS Work?

The fine details of development have varied for the four RDIS interpretive

works, but the km erall process has remained true to the Project's goal. to make it

possible for teachers and researchers to listen to and understand each other

The process used to develop Research Within Reach: Secondary School

Mathematics illustrates how RDIS works. First. around 150 questions wen, col-

lected in telephone interaews of a national sampliag of junior high aux' high school

teachers. Second. the RDIS staff met with the Mathematics Consultant Panel to

review the questions. The panel membersDr. Mary Grace Kantowski. Dr. Rob-

ert Reys, and Dr. Marilyn Suydamidentified the topics which were represented

by the questions and for which there exists a research base for answers Next, lit-

erature searches were condhcted and first drafts completed. Those drafts were re-

viewed by the Consultant Panel and by other mathematicsVducators Their reviews

led to second drafts, and the process coMinued in this manner until the final drafts

were completed and approved.

How Can This Book Be Used?

Research iiininn Reach. Secondary School Mathematics can be used in a

number of ways. Each chapter begins viith a question front a teacher. The answer

is constructed so that research information and the classroom implications of that

research are clear. Very often, the chapter includes recommendations for class-

room practice. Each chapter concludes with a list of references on which the an-

swer is bast(' and to w hich readers may go for a more thorough understanding of

the,parucular source. (Thow references thought to be of special value for teach-

ers are marked with an asterisk *.)
hach chapter is written in such a way that it may be read independently front

the others. While this creates some repetition, it is our feeling that this provides

greater flexibility both for the reader who wants to read about a particular topic,

as well as for the reader who wants to survey the entire field. In any event. each

reader is invited to read the chapters in whatever order seems best to him or her

In addition to its obvious use for study by individuals. Research Width: Reach.

Secondary School tWamematio will prove useful for pre-service and in-service

courses. Each chapter can be read in a relatively short time and then can be used
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as a basis for discussion in the 60 oi 90 minutes periods which are often devoted

to in-service activities. In-sers ice leaders might use the chapters as the basis for

the duselopment of checklists of important research recommendations against which

teachers can analve their teaching and students learning.
Similarly, teacher candidates will find that the chapters may prepare them to

consider actual classroom practice in a way which they have not before All'of
the recommended practices and much of the research reported are' grounded in

experience in real classrooms, an ens ironment with which many teacher candi-

dates remain relatively unfamiliar throughout their college career
Finally, it is hoped that readers of Research Within Reach, Se«indar ,School

Mathematic %% ill take seriously the numerous insitations to replicate or validate

the research cited here. One topic that seems especially conducive to teacher ex-
perimentation Is the use of microcomputers. Although the as ailable microcom-

puters research is cited in chapters where it is relevant, the body of research is

too snhill to warrant a separate chapter. That situation must and wHI change; the

topic is too important. The dearth of research will be coirected, but in the mean-

time, teachers' use of microcoinpulcirs will very much depend on the ingenuity

and good sense of indisidual teachers. Teachers w illing to undertake classroom
research utilizing micros can perform a sers ice both to their students and to the

community of mathematics educators at large.
Classroom teachers work in ens iromnehts rich w ith research potential While

it is possible to less this call to research as one more burden, it is also possible

to view it as a way to gain a new understanding of how our students learn and

how we can be more effectise teachers. It is our hope that Research Within Reach

Secondar) &Iwo! Mwhematics will help to ease the burden while it guides teach-

ers toward that new understanding,

David lioldzkom
Director
R&D Interpretation Service

Mark Driscoll
Research Associate
for Mathematics
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What does research say about the effect of factors beyond subject

contentfor example, classroom coufiguration, teacher-student
communication and teacher behavior--on students' learning of
mathematics in secotidary school? How do these factors affect

student attitudes toward learning mathematics?

In recent years. mathenmacs teaching has become a profession in crisis. While

the number of secondary school nmthematics teachers dwindles to a dangerous

level, many who are left in the ranks find themselves questioning their own com-

nutment to teaching. Among the more distressing questions they ask themselves

is one that pulls at the very root% of thc profession: "Can the teacher really make

a difference in the mathematics classroom?"
The answer, pieced together from a series of recent research studies, is clearly

yes. No matter how teachers are identified as effective, whether by student

achievement, by supervisors' recommendations, or by tile testimony of students

and classroom observers, it is evident that effective teaaers of mathematics plan

and behave differently frop less effective teachers. More importantly, they do so

in identifiable ways that can be learned by other mathematics teachers.

bo often, teacher training concentrates only on teacher behavior and ignores

the influence\on that behavior of teacher attitudes, opinions, expectations, and

planning. Yet research clearly shows the strength of that influence, Conse-

quently. this report is divided, somewhat, loosely, into two parts: ways in which

effective atul ituffective leachers behave in the classroom and aspects of their

thinking and planning that influence their behavior,

Effective Behavior

In their study of 7th and 8th grade teachers, Evertson, Emmer. and Brophy

were able to associate a certain style of class organization, used consistently. with

effective mathematics teaching. (7) The researchers used two criteria for effec-

tivenessstudent achievement and student ratingsand found that, on the aver-

age, the more effective teachers devoted about hall of each period to cOmbined

lecture, demonstration, and discussion. On the other hand, the less effective

teachers used only about a fourth of each period for lecture, demonstration, and

discussion, and over a half of each period for individual seatwork.

In another study of junior high mathematics classes, Evertson et al. found a

similar pattern and were able to elaborate on the teachers' use of' time: "the more

successful mathematics teachers spent mpre time in class discussion or lecture,

1 2 3



EffectNe Mathematics Teaching

they asked more public questions (creating response opportunities), and response
opportunities formed a greater proportion of their contacts with students They
did not, holvev et.. have fewer private contacts. Rather, they were simply more
active." (6, p. 54)

Questwiung. The larger amount of time effective teachers spend with
entire class means,they have a greater opportunity to ask questions, and question-
asking appears to be an important factor in the effective teaching of secondary
level mathematics. In particular, Benson, Emmer, awl Brophy noted that ef-
lective teachers asked more so-called process questions (calling for explanations)
and also more product questions (calling for short answ ers) than did less effec-
tive teachers, and that they asked more new questions after correct answers had
been given. A study of classroom questions asked by geometry teachers showed
that students' sucxess Rapplication tests in geometry is related to the frequency
of their teachers' use of application questions in class. (8. 22)

A helpful discussion of the uses of classroom questioning is in Johnson and
( 12) Another good discussion of the roles and v arious uses of questions

in mathematics teaching appears in the chapter entitled "Questioning" in Dithw-
IlLS Mathemano, a olume devoted to the teaching of middle school math-
ematics. (15) In particular, it pinpoints more than eleven separate uses for teacher

questions, including:
I. lb motivate students to consider a new topic. ("What are some four-sided

geometric figures you can think of?")
2. To challenge. ("What evidence (10 you have for thinking that?")
3. To pro\ oke student interaction. ("Bill, do you agree with what Martha

said?")
4. To get students to evaluate. ("How do you think your niethod would work

on this next problem?")
5. To focus on process. ("What method did you use on that problem?")
6. To guide. ("Do you remember a problem similar to this one?")
7. To diagnose. ("How did you get that answer?")
8. To rev iew. ("What are some of the things you've learned so far about tri-

angles?")
9. To encourage exploration. ("Can you find a pattern in those numbers?")

10. To invite student questions. ("What questions does this infornuition leave
unanswered?")

11. To enhance transfer. ("How emid you use that result in this new situa-
tion?")

While the quantity and variety of classroom teacher questions seem essential
to teacher effectiveness, so does the control of wait-time between questions and
answersboth the pause following a teacher's question and the pause following a
student's response. In fact, Good's research, in junior high classrooms. has re-
sealed that many teachers wait less time fur their low-achieving students to re-
spond to questions than they do for higher-achieving students, and that, in general,

4
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Effective Mathena itics Teaching

they provide t hese students fewer cl.ances to participate in public discussions (9)

m the end. Good maintains, most of these neglected students become totally.pas-

sive learners.
Encouragement. 'Effective teachers try to keep most of their studentslow

achievers as well as high achieversfrom slipping into passive learning. The ef-

fective junior high mathematics teachers obsetved by Evertson, Emmer, and Brophy

were more encouraging and more receptive to student input than were their less

effective colleagues, (7) In another study, Evertson ci at also noted that the higher

the mimber of student-initiated questions and comments, the higher was student

achievement in mathematics. (6)
As a result of his concern that so many students fall into a totally passive state

of !earning, Good recommends that "teachers who want to monitor and crea-

tively examine their own behavior in order to reduce inappropriate behavior:would

do well to develop strategies for encouraging students to seek information as

needed." (9. p. 419) 11 students are consistently denied such encouragement,:the

results can be disastrous, for, as we note in the Research Within Reach chapters

"Understanding Fractions. A Prerequisite for Success in Secondary School

Mathematics" and "Communicating Mathematics". research shows that by the

time they reach high school, many students have acquired deep, enduring, yet

nearly Invisible. misconceptions about mathematics that seriously impair their

learning and. enjoyment of the subject in high school.

The basic strategy for teachers to develop, of course, is the consistent en-

couragement and reinforcement of questions and requests for help. Beyond that,

it is a matter of setting a tone and a dynamic in classroom discussions which al-

low students to be curious and which lead them to ask questions.

AlodelMg. As the picture of teacher effectiveness unfolds from research, it is

clear that it is not only through such direct means as asking questions, generating

questions, and offering eccouragement that teachers make their teaching more

effective. Indirect means are also important, such as the teacher's own modeling

of good learning behavior. Evertson, Emmer, and'Btophy noted that more effec-

tive teachers "engaged in more problem-solving behavior" in their study. (7, p.

173) Thus, the teacher shows the way to problem solving through his or her own

example. The problem-solving iesearcher Frank Lester has concluded: "Prob-

lem-solving instruction is most effective when students sense two things: ( 1) that

the teacher regards problem solving as an important acti vity and (2) that the teacher

actively engages in solving problems as a part of mathematics instruction." (14.

p. 43)
A graphic illustration of the effect of teacher modeling emerged rrom the re-

search of Gregory and Osborne. They discovered a clear correlation between the

frequency of 7th-grade mathematics teachers' use of conditional reasoning in their

speech (for example, "if-then" and "whether-then" statements), and their stu-

dents' understanding of logical statements. (10)

Signs of teacher effectiveness show up in the selection and presentation of

5
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mathematkal_ content as w ell as in the modeling of good learning behavior For
example, Smith found in his study that effective mathematics teachers use a greater
number of relevant examples than do their less effective colleagues. (21) In a re-
seara study usmg computer-assisted instruction, Shumway found that the use of
Lounter-examples of mathematical statements, in Lonjunction with (positive) ex-
amples of those statements, resulted in higher achievement than did the use of
examples alone. (20, 22) Thus, a discussion about isosceles triangles is best
complemented by some identification of, and discussion about, non-isosceles tri-
angles, discussions about rational numbers should be balanced w ith examples of
irrational numbers, and so on.

As one aid in generating mathematical examples and counterexamples, teachers
ought to take advantage of the handheld calculator. The Cakulator Information,
Center prints a variety of such examples (11), and the Research Within Reach
chapter "The Calculator. An Essential Teaching Aid" directs readers to other
sources of calculator-based examples.

Clarity and Continuity. Campbell and Schoen conducted a study in the 7th and
8th grades in which they searched for correlations between the behavior of pre-
algebra teaLhers and student attitudes toward mathematics and toward the teach-
ers. (3) Clarity, defined as the careful use of vocabulary and explaining the why
with the how in solving problems, and showing the continuity of the mathematics
curriculum were the two teacher qualities that correlated most positively with
student attitudes. As the researchers noted, ''Students who perceived their math-
ematics teacher as trying to remove the 'mysteries' of mathematics had more po-
sitive attitudes toward mathematics and the teacher." (3, p. 374)

McConnell focused on students' perceptions of teacher clarity in his study of
9th-grade algebra, and he found that they matched up fairly closely with the stu-
dents' mathematical comprehension. (16) In fact, comprehension test sLores were
positively correlated with the ratings of teacher clarity given by the researchers
as they observed classes, but those test scores were even more strongly correlated

with student ratings of teacher clarity.
In several other studies of secondary mathematics instruction, clarity also

emerges as an important component of teacher effectiveness. When Smith com-

pared effective ith ineffective teachers in his study, he noted a tendency among
effective teachers to use fewer vague terms in their mathematical instruction (21)
Bush et al. set up their study to try to capture the notion of clarity in terms of spe-
cific teacher behavior. (2) The behaviors they related to clarity were:

1. Taking time when explaining.
2. Stressing difficult points.
3. Explaining new words.
4. Demonstrating how to do something.
5. Working difficult Problems on the board.
6. Givings students an example and letting thein try to do it.

6 15
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lu a related study, Cruickshank et al. used junior high school students' per-

ceptions to distinguish clear from unclear teachers. (5) Among the behaviors the

students associated with dear, but not with unclear, teachers were:

1. Giving students individual help.
2. Explaining something and then allowing students to think about it.

). Repeating questions and explanations if students do not understand.

4. Stressing difficult points.
5. Asking students before they begin a task if they know what they are sup-

posed to do and how they are supposed to do it.

6. Taking time when explaining.

Planning for Effectiveness

No matter what gauge of effectiveness is used--student achievement, student

ratings, or classroom observationseffective mathematics teachers behave 'in

identifiable ways that set them apart. Their classes are structured for consist-

encyin particular, every class has some inaividual scatwork, but has more whole-

class work than scatwork. They come to class prepared for clarity and continuity,

aware and in control of their questionio, modeling, and encouraging students in

the class. Such effective behavior requires preparation, and two specific areas that

research has identified as important are use of language and expectations.

Use of Language. Judging from the testimony of classroom observers and fromo

student testimony as well, teachers who wish to improve the clarity in their:math-

ematics teaching would do well to measure the vagueness in the mathematical terms

they plan to use in class. They should always plan to explain neW words and terms

and to spend enough time in class discussing the more difficult of thein.

Some mathematical words and terms can have several meanings and they may

confuse many students if the.teacher's intended meaning is not made abundantly

clear and held constant. In discussing changes in the meaning of terms during

mathematical discussions, Kemme (13) provides the transcript of an algebra class

in Which the teacher.poses a problem:
There is a certain number of students ;1, the classroom. If there were twice as

many and then another ten were added to it, then there would be 42. How many

students are there?
Several students arrive quickly and intuitively at the solution 16. The teacher, still

hoping io use this problem to illustrate how to translate from word problems to

equations, asked: "What kind of equation could you write in this case?" Since

they knew the answer, several students answered, quite legitimately: "x = 16."

The teacher, of course, wanted the equation 2x + 10 = 42 as an answer. To the

teacher, "equation" had a definite functional meaning--a tool for figuring out the

solution. To the students, the term "equation" included the mett statement of the

answer. Because of these different meanings, the dais dikussion turned into a

verbal wrestling match, with the teacher trying to twist the desired equation from

16
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the students..while they remained unpersuaded and confused.
Examples of such misinterpretations abound in mathematics teaching For

example. the term "large'' can connote how far away from zero a-particular number

is. Hence, a sentence like. "4 is larger than -7,' confuses many youing people, if

they refer in their minds to distance from zero when they see "larger," and not
to the two numbers' relative positioning on the number line. Similarly, if teach-

ers a,re careless enough to portray rectangles almost exclusively as non-squares,

their students can very easily be trapped into picturing only non-squares in situ-
ations where a more genernl conceptualization is appropriate. In such cases, they

fail to recognize that all formulas and relationships connected to squares are spe-
cial cases of formulas and relationships connected to rectangles.

Evectanons. One critical aspect of teacher planning which research shows
does not act the attention it demands is the area of teacher expectations about stu-
dent performance. No one can say for certain that a teacher's expectations about

,1 particular student will have a direct bearing on that student's academic achieve-

ment. What seems certain, however, is that teachers tend to behave differently

toward high- and low-achieving students, that students can and do discern ex-
pectatiorm from a teacher's behavior, and that they adjust their own attitudes, ex-

pectations. and behav ror accordingly. Good cites his own iesearch. as well as the

supportive research of others. indicating that junior high students see their teach-

ers behaving diffewntly toward low-achieving students. In particular, high achievers

are perceived by students to have "more choice of taSks and more lime to com-

plete work if they request it." (9. p. 421)
Other research has also focussed on ways in which many teachers behave,dif-

terently toward high achievers than toward low achievers. Good summarizes that

research. and though ,not all of the studies were conducted in the secondary school

mathematics classroom, the full summary provides a valuable checklist for teachers

and so we repeat it here: (9. p. 416)
I. Seating slow students farther from the teacher or in a group (making it

harder to monitor low-achieving students or treat them as individuals),
2. Paying less attention to low-achievers in.academic situations (smiling less

often and maintaining less eye contact).
3. Calling on low-achievers less often to answer classroom questions or make

public demonstrations.
4. Providing less time for low-achievers to answer questions.
5. Not staying with low-achievers in failure situations (providing fewer clues.

not asking follow-up questions).
6. Criticizing low-achievers more frequently than high-achievers for incor-

rect public responses.
7. Praising low-achievers less frequently than high-achievers after success-

ful public responses.
8. Praising low-achievers more frequently than high-achievers for marginal

or inadequate public responses.

8
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9. Providing low-aclneving students with less accurate and less detailed

feedback than high-achievers.
10. Failing to provide low-achievers with feedback about their responses mote

frequently than high-achievers.
11. Demanding less work and effort from low-achievers than from.high-

achievers.
12. Interrupting the performance of low-achievers more frequently than that

of higli-achievers.
The issue of whether teacher expectations affect girls' mathematical learning

deserves special note. Parsons and her colleagues studied the effects of teacher

expectations on interactions in 15 eighth-and ninth-grade mathematics class-

rooms. (17) In the 5 classrooms in which teachers had the most different expec-

tations for boys and girls, the researchers observed significantly more praise of

boys' work than that of girls and fewer private student4eacher hiteractions. In

contrast, when the researchers observed the 5 classrooms with the least sex-re-

lated differences in teacher expectations, they found-that girls interacted mom and

received more praise, and that there was more one-to-one teacher-sludent inter-

action. (17, 19)
A set of firm and appropriate expectations, kept visible to students and ap-

pealed to regularly, is an essential component of effective teaching. A major study

of British secondary schools revealed that high academic expectations make up

one of several factors that set effective schools apart from ineffective schools. Where

effectiveness is measured by student achievement, attendance, behavior, and de-

linquency records, (18) The staffs in the study's effective schools communicated

to their students that they expected most of their students to do well on exams,

they assigned hotaework regularly, and they checked homework regularly, Less

successful sqools did none of these things as forcefully or regularly. Evertson.

Emmer, and Brophy noticed a similar pattern in junior high mathematics class-

rooms: "The more'effective teachers also manifested behaviors indicative of higlier

expectations for their students. They assigned homework more frequently, stated

their concern for academic achievement more often, and gave more academic en-

couragement." (7. p. 176)

'Conclusion

There can be no doubt that the effect of mathematic:, teachers on students is

profound. As Bauersfeld describes it. "Teaching and learning mathethatics is re-

alized through human interaction. It is a kind of mutual influencing, an interde-

pendence of the actions of both teacher and student on many levels. It is not a

unilateral sender-receiver relation--the student's reconstruction of meaning is a

construction via social negotiation about what is meant and about which perfor-

mance of meaning gets the teacher's (or the peer's) sanction." ( , p. 25)

Only the teacher can determine whether the effect of those classroom inter-

actions will be beneficial or harmful. The margin of benefit increases, however,

9
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ith the care and planning tcacheis put into their clarity and the control they ex-
ert oNer their expectatIons and classroom efforts to \NelLomc and to generate stu-
dent input.

The Importance of clarity and of imok ing students as much as pôssiblc is a
message that ernanates, not from one, but from seLeral major research studies.
Two recent studies, howeLer. imply that we are far from heeding that message.
In the first--a surey of research on patterns of instruction in American mathe-
matics classroomsthe most noticeable pattern. in an oN erwhelming number of
mathematics classrooms. inLoked a daily routine in which answers are giL en to
the pretious day's assvment. the more difficult problems are worked at the board.
new material is coNered briefly assignments are giL en for the next day, and the
rot of the period is spent on indiNidual work or the homework assignment. (23)

Just as worrisome as patterns of instruction arc patterns of student attitudes.
Data from the second study. the National Assessment of Educational Progress.
resulted in the follow ing conclusion. "For the 9-year-olds. mathematics was the
best liked of fke academic subjects. mathematics LL as thc second best-liked sub-
ject of the 13-year-olds and the least-liked subject of the 17-year-olds." (4. p. 134)

If we are to hold onto the interests of students as they begin to drift away in
the early years of.seLondary school mathematics. then teachers nmst heed the
message of research into teacher effeLmeness and begin to adjust their planning,
expectations. and behaN ior to create a classroom emiromnent in which clarity is
a constant goal and in which student input is at the center of the kaining expe-
rience.
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INDIVIDUAL
DIFFERENCES AMONG

MATHEMATICS LEARNERS
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What are some of the major differences in learning styles and levels

of development among secondary schodl students? Howshould such

differences be dealt with in the mathematics claisroom?

Despite thejact that much of the secondary schoolcurriculum is designed on

.the assumption that students ail think in the same way, secondarj, level mathe-

matics teachers know differently. Every year, they meet many students who seem

unable to think logically, or who become confused whenever symbols are used to

represent mathematical concepts. Furthermore. many students approach mathe-

matical decisions without a sense of what is reasonable.

This report addresses individual differences in mathematics learning at the

secondary level. It describes the major factors which research has linked to in-

dividual differences, lists the curriculum areas where those factors are likely to

have a significant impact, and offers some suggestions to teachers for identifying

and responding to those individual differences.

Individual Differences

There are several research perspectives on individual differences in mathe-

matics learning. One group of researchers concentrates on the different stages of

cognitive devekjmient through which children grow. Another group studies the

various cognitive styles or ways of processing information among learners A thitd

group isolates the curricular and environmental influences to which learners )re-

spond differently, regardless of learning styles or developmental levels Taken to-

gether. the three perspectives provide a more integrated picture of the individual

mathematics learner than each provides separately.

Cognitive Development
Generally, developmental researchers draw their perspectives front the work

of Jean Nagel and his followers, As Piaget describes it, adolescence is the period

when children grow out of the stage of concrete operations where thcir thinking

has been totally dependent on perceptions and,concrete experiences Readers who

want a more comprehensive look at the concrete stage should refer to the report

"The Bridge front Concrete to Abstract" in Research Within Reach' Elementary

School Mathematics. This report focuses on the formal operation stage, the stage

that follows the concrete operations stage. in- which an individual can internalize
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thought. think about thinking, keep tWo or more v ariabks in mind at one time.

and see a concept as part of a larger system.
According to the original Piagetian hypothesis. a majority of children enter

the staee of formal ';unking between the ages of 12 and 14. Research has shown.

however, that for many children the process is much slower. (22) There are in-

dividuals N% h o begin to think formally on some tasks well before they can think

formally on.others. and soine individuals net er enter the stage of formal thinking

for some tasks.
Piaget dams that the stage of concrete thinking ends ahd the fcanal thinking

stage begins for a lhdd w hen he or sh; can conserve the concept of volume Con-

sen ation of volume is tested in several ways, but the Opl in each case is to de-

termine if a child understands the unwept of volume well enough to ignore irrelevant

attributes in volume problems. The irrelevance of thc weight of an object to the
olume ot water it displaces m, hen inmiersed provides an,example. A student is

shown two identical glass coMaitiers partially tilled with equal amounts of water
Iwo metal cyhnders of equal volume but different weight are then handed to the
student. After the equal heights and thicknesses of the,metal _clinders have been

pointed out, the experimenter lowers the lighter cylinder into one of the two glms

containers. Once the student notes the rise in water level. Itt.itir she is asked to

predict the rise in ater level when the heavier cylinder is lowered into the other

glass container. A chikl ho is at least in the early stage of formal thinking will
recognize that the weight of the cylinder in this example has nothing to do with

how much volume is displaced.
In his review of the research on cognitive development. Carpenter has de-

scribed formal thought in the following way:
The most fundamental property of formal Thought is thc!ability to consider

the possible rather than being restricted to concrete realit. At this stage ad-

olescents can identify all possible relations that can exist within a given sit-

uation and systematically generate and test hypotheses about these relations

They are capable of e aluating the logical structure of proposition% indepen-

dent of any concrete referents, and the y are able to reflect on their own thought

processes." (3, p. 176)
According to the Piaget model, two of the majmfacets offormal thought are'

1. Propositional logic. Individuals who have reached this level of thinking can

understand "if...then" and "either...or" reasoning and can keep several varia-

bles in mind at one time. Flavell describes a study in which an experimentershows

poker chips of different colors to children, then hides one in his hand, and says.
"Either the chip in my hand is green or it is not green." The children are in-

structed to indicate whether they think the statement is true, false, or undecidable

Pre-formal thinkers tend to concentrate on their perceptions--in this case, a chip

hidden from view--and indicate that they cannot tell whether the statement is true

or false. Individuals who have attained the formal stage of thinking are more in-

clined to focus on the words, not their perceptions, and therefore to indicate that
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the above statement is true. (
2. Proportional lope. Individuals who have reached this level of thinking can

successfully compare ratios, as in the problem: "Which mixture would give the

sweeter drink. one that is ( nails orange syrup to 9 parts water or one that is 4

parts:orange syrup to 8 parts water?" Preformal thinkers are generally unable to

hold the two ratios together in their minds in a way that allows thenuo weigh one

ratio agamSt the other and thento adjust one ratio to makti it proportional to the

other. (6, I 1)

Cognitive Style

Another perspective on individual differences among mathematics learners

has developed from the work ofresearchers who study cognitiNk style, or how in.-

dividuals differ in processing information. Many such cognitive styles have been

identified; this report concentrates only on those styles that have the greAtest im-

plications for the teaching of secondary level mathematics.

As described by researchers, each cognitive style represents a continuum of

style in mformation processing, and everyone has a place somewhere on that con-

tinuum. One such continuum is given by the twO opposing cognitive styles im-

palsivirs and reflection. Persons at the impulsive end of the continuum tend to pursue

the first answer that comes to miiid when they are asked a question or the fir's(

approach to a solution when they face a problem. Reflective individuals, on the

other hand, are hesitant to respond or react quickly, and they are likely to reflect

longer on the different possibilities for apswers and problem solutions. (9)

Field dependence and field independence are the opposing ends of another

cognitive style continuum. As Fennema and Belli- describe it.

"At the field dependence end of the continuum, activities and perceptions are

global, tiat is, subjects focus on the total environment. At the field inde-

pendence end of the continuum, activities and perceptions are analytical, that

is, subjects perceive the environment in its component parts. At the one ex-

treme of the pertbrmance range, perception and mental activities are domi-

nated by the prevailing field; at the other extreme they are relatively independent

of the surrounding field." (9, p. 331)

Other Factors

Other factors that contribute to individual differences among mathematics learn-

ers have arisen from the work of clinical researchers. Several clinical studies, in

which students were interviewed as they worked through mathematical exercises

and problems. have made the following hypothesis seem very plausible: as chil-

dren proceed through school mathematies--in particular, as they approach sec-

ondary level mathematics--some develop a style of learning that relies on Memorizing

rules and procgdures. while others develop.a style that leads them to rely con-

sistently on intuition and common sense. To illustrate these styles, Peck and Jencks

reported on their interviews of two 7th graders, both fairly successful in mathe-
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maticsis measured by standardized tests and their placement in school. Both stu-,
dents %ere asked to work through exeruses in the multiplication and comparison
of decimals and in the addition of fractions. Each applied learned rules for these
exercises. but one relied so heaily on memory that she was unable to sense when
her memory had produced the wrong nde for her. For example, she worked through
the following example:

1.1

x 2.13
.33

1.20
11.00

24.53

11er description of the rule for locating the decunal point in the answer %as. "You
look at this bottom line and keep going straight down underneath for the an-
swer. lier firm locus on the rulewhich is appropriate for addition and npt mul-
tipItcation of decimalsblinded her to the unreasonableness of prtxlming a number
larger than 24 w ith the multiplication of two numbers less than 2 and 3. respec-
tively , the second student, on the other hand, %as consistently inclined to apply
intuition to supporting and gauging the appropriateness of remembered rules. The
two students were interview ed together and, as intelligent as she was, the first`
student %as unable to make the leap from mathematics-as-memorized-rules to the
common sense approach of the second student. (20) .

Students often misapply ruks and are unable to gauge whether a particular nde
is appropriate. Though there probably is no single cause for suckbehav bor. din-

)ical research has dearly documented how deeply ingraine the reliance on mein
ory becomes for some Mathematics students and how na ow is their freedom to
use their intuition when they are doing mathematics. -

Factors which grow out of the mathematics curficulum itself and the chiltrs
previous experience w ithin that curriculum can also heighten difference, milting
learners. For example, it seems clear from several studies that children Nary in
their success in bridging the system and language of mathematics w ith their real
world ,ystem and eN cry day language. This i not a quesnoi, of being far enough
along in cognan c development to be able to handle mathematical symbols. Sonic
children handk symbols well enough. but their impression of mathematics is that
It is a system of rules ti l. orced from the real world. Thus, they work through
problems and exercises, using rules that may not, in certain situations, make any
sense when measured against their real-world experience. .

Erlwanger's study of this phenomenon was at the elementary school level, but
it presents a graphic illustration of this disjointed view of mathematics, anti is rel-
evant to the teaching of secondary level mathematics. (8) lt is tempting to assume
that if a srudent has sonic basic misconceptions about mathematics, those mis-
conceptions will show up quickly either through test results or teacher observa-

As

18
2,*°



Indiridnal Learner Differences ,

pon. Erlwangcr. howoer, tound sixth-grade children who were fairly successful

in their mdividuahzed mathe Iiat.ncs programs, but whose perceptions of mathe-

matics as a system were very skewed. For example, one child name&Benny had

torrectly observed that mathematical answers can be written in various forms, as

in 1 = = ½ + 1/2. but had stretched his observation into a strange, basic be-

lief about inathemanes. Benny believed that in mathematics an answer can take

apparently contradictory forms, because answers, in his words, work like -magic.

because really theyle just different answers which we think they're different but

really they're the same." (8. p.173) This belief made him adamant in defending

such statements as 2/1 1/2 = 1 and 5/10 as a decimal is 1.5 Hie one stands for

10: the decimal; then there's 5shows how many ones." (8. p. 202) Amaz-

ingly, Benny had woven such misguided rules into a coherent system that per-

mitted him to succeed in his individualized mathematics program.

Booth's work points to ,another variation of this lack of success in brklging

mathematics and the real world. He,repons a significant frequency of secondary-

level students who may compute %%,ell enough using formal mathematical proce-

dures such as long division, but who fall back on what Booth calls "child-meth-

ods," such as counting, when they work on mathematical word problems. (2) At

no point along the way have they come to see how formalized computational pro-

cedures can be used as strategies for solving mathematical problems. While it is

clear that all students use mathematical methods of some sort to solve real prob-

lems. it is equally clear that for many of these students a chasm stands between

those methods and the mathematics they use for computational exercises,

Critical Topics

According to the research outlined above, every secondary level mathematics

student (1) is somewhere on the continuum between concrete thinking and full

formal thinking, (2) has a position on each of several cognitive style continuums,

and (3) differs from many otherstudents in the kind of bridge he or she has built

with language. intuition, and the formation of personal rules--between mathe-

matics and the real world.
\Vhether a student understands a particular mathematics topic or not may de-

pend on how properly the presentation of the topic fits the needs of that student.

With the profile of individual differences developed above, it is possible to clar-

ify some of those needs and to pinpoint topics in the secondary mathematics cur-

riculum where the matching of presentations to individual differences is likely to

be critical to success in learning.
Throughout the range of secondary level mathematics topics'. teachers must

be aware of one overriding limitation imposed on pre-formal thinkers and shoukl

tailor their choice and presentation of mathematics examples accordingly. The pre-

formal child. in the words of Havel!, "usually begins with reality and moves re-

luctantly. if at all, to possibility." ( I , p. 103) Hence teachers should not disre-

gard students who do not respond very smoothly to "what if...?" questions or to
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chalienges to make hypotheses. Those students may not have settled into the level

of formal thinking where such tasks are a comfortable matter of course
Here are some specific mathematical topics where individual differences have

been detected. They are presented with suggestions for adjusting instruction

Proportion and Fractions. Preforml thinkers have considerable difficulty with

proportion problems. hich compare two or more ratios. But what about the
components of those problems. the ratios themselves? A ratio is, of course, one

of the representations of the concept of fraction, and most students have been ex-

posed to fractions from early elementary school. Thus most secondary teachers

have high expectations about the facility in using fractions that students bring to

secondary mathematics.
It turns out. however. that a firm understanding of fractions depends on the

development of formal thinking. McBride and Chiappetta studied ninth-graders'
understanding of equivalent fractions (for example. four-sixths equals how many
ninths?), and they were led to conclude that facility in using the concept in-

creases as proportional reasoning increases. (19) Many ninth-graders have not yet

settled into full formal thinking, in particular. into proportional reasoning, so
teachers at that level must watch for weaknesses in their understanding of equiv-

alent fractioqs.
Stadents who are in transition from concrete to formal thinking can benefit from

instruction in crucial topics like fractions. Like preformal thinkers, many early
formal thmkers show their inability to do proportional thinking by adding inap-
propriately when they arc asked to adjust one ratio to make it proportional to an-

other. For example. consider the problem. When Bill made lemonade he used 4

spoonfuls of sugar and 10 spoonfuls of lemon juice. Mary made lemonade with

6 spoonfuls of sugar. How many spoonfuls of lemon juice must she use so that

her lemonade will taste the same as Bill's?
It has been an ,established fact that a common strategy of preformal thinkers

is to subtract 4 from 6 to get 2. then add to 10 to yield the answer 12, The correct

answer. of course, is 15 and it is produced by proportional thinkingfor exam-

ple. 4/10 =
Recem:y, Karplus and his colleagues have confirmed that early formal tiink-

ers may also use such an additive strategy. (13) In this study. nearly 25 percent

of the sixth and eighth graders they tested and interviewed alternated between ad-

ditive and proportional strategies in solving a string of such lemonade problems

The researchers' conclusion. avoidance of fractions, rather than cognitive devel-

opment. seemed to be the major obstacle in the way of these students' mastery of

quantitative proportion problems. In other words, there are many students who

could move fully into proportional thinking if the appropriate instruction were made

available to them.
Kurtz and Karplus designed some instruction that can affect proportional rea-

soning. (16) In a laboratory setting with prealgebra students they used tables of

data as the vehicle for illustrating the concepts. such as constant ratios, that are
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the basis ot proportional reasoning. The lesons extended over tburteen class pe-

riods. When the students were tested before the experiment, one-sixth of the stu-

dents m the experimental group exhibited proportional reasoning: after the

instruction, roughly two-thirds of the students exhibited proportional reasoning,

Proof. A formal mathematical proof is a complex cognitive task. The indi-

vidual constructing the proof must weigh several deductive paths at the same time.

Once the path for the proof has been chosen, both the goal and the established

evidence must come tog ther to inform the steps of the proof. These are taxing,

if not futile, demands on re-formal students and there are many such students in

the ninth and tenth grade , where formal proof is a frequent objective in the cur-

riculum. (For further inf rmation about proof, see the chapter "The Path to For-

m! Proof.)
Algebra. Both cognitive style and cognitiVe development have a dinkt bear-

ing on the learning of algebra. Cognitive style seems to come into play in the

strategies students choose to solve algebraic equations. Petitto found that ninth-

graders fell into two strategy groups: those who leaned toward an intuitive ap-

proach that tried to capture the numerical relationships among the numbers in an

equation without transforming the equation itself, and those who relied on mem-

orized or routinized step-by-step procedures (algorithms) for transforming the

equation and producing an answer. (21) Some students moved easily betWeen the

intuitive and algorithmic approaches, and they tended to be the most successful.

For example, students in the intuitive group solved 3's = Ymi by noticing that

30 is 6 times 5, so x must be 6 times 3, or 18. Students in the algorithmic group,

on the other hand, multiplied both sides of the equation by 5 to produce a new

equation, multiplied both sides of that by 6, etc, From observing these two styles

in action, as she gradually increased the difficulty of the equations given to the

students, Petitto learned that neither strategy, used alone, was foolproof. Stu-

dents with the intuitive style faltered as the number relationships grew in com-

plexity, as in 14/23 =5%42), while students in the other group occasionally failed

to adapt their algorithmic procedures when the structure of the equations changed.

As a result, they not only produced a wrong answer, but were unable to check to

see if the answer fit in the equation.
Since the most successful subjects in the study were those students who moved

easily between the intuitive and algorithmic approaches, Petitto suggests that al-

gebra teachers give equal stress to step-by-step solution procedures and to the

consistent intuitive assessment of equations to see if the numbers in them relate

to each other in ways that suggest solutions.

Formal proof has already been mentioned as an aspect of algebra affected by

'cognitive development. Another is the concept of equation. In particular, Wag-

ner studied how well 12-, 14-, and 17-year olds conserve the concept of equation.

(26, 27). Once again, conservation was the measure of cognitive development and,

just as in the case of conservation of volume, the task was to assess the under-

standing of a concept "by determining whether or not a person realizes that the
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aitical attribute, the esseme of the LonLept. is invariant under transformations of
L.eitain irrelevant attributes." In the case of equation, Wagner presented each
student with two equations. (in the second equation W is seen through a small
window from which it can be removed):

7 x W + 22- = 109
7 x W + 22 = 109

Once the student acknow edged that they both have the same solution, the re-
searcher replaced W by N in the second equation and asked "Which solution will
be larger?" Students whose response indicated,that they thought the solutions would
be different were deemed nonconservers. Wagner reported that one-third of the
interviewed students who had successfully completed algebra failed to conserve
on this task. Her experiment makes it very clear that a sizeable number of chil-

dren complete algebra but do not conserve the concept of equation.
Geometo and Measurement. Any geometric problem that requires a student

either to construct a formal proof or io hold more than one variable in mind at a
time will so erely tax the child who is in the preforml reasOning stage To illus-
trate, Kidder conducted a study that required 13-year olds to consider the invar-
iants when a triangle in a plane is rotated through a fixed angle. (14) The students'

answers were a mixture of correct and incorrect conclusions.sand Kiddei ascribed
this to their hming to focus on one variable (e.g., length of sides) and then an-
other (e.g., the positions of the triangle vertices with respect to the origin of the
rotation). In particular. they generally showed an inability to conserve length in
the taskthat is, to understand that in r" rotation of a triangle the side lengths do

not change.
If conservation of length and conservation of volume are weak points for in-

div !duals ho have not reached the level of full formal thought, it would seem
likely that conservation of area would be a weak point. too. Indeed it is. as Sze-
tela learned. He gave seventh- and eighth-graders the task of deciding whether or
not deforming the perimeter of a shape affects its area (24) Of course, it usually
does (for example; changing a square into a rhombus with the same side-length
does not change the perimeter, butit changes the area), but Szetela found that the
pre-formal thinkers in this group of subjects were inclined to believe that areas
are invariant under such transformations of perimeter.

a

a
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Problem So lung. A study of tkprocesses used by eighth-graders to solve al-

gebra problems showed that pre-formal thinkers'used fewer processes than for-

mal thinkers. (7) In particular, the study examined performance on problems such

as:
Jeff bought 5 oranges and 10 apples for $1.65 . An apple and an orange
together cost 20 cent,s. Hmv mudi does one apple cost? How much does

one orange cost?
Both groups contained students who used diagrams in their approaches to the

problems as well as students who tried torecall similar problems, but students who

were formal thinkers used the following processes not used by the others: deduc-

tive reasonini. use of successive approximations, estimation, checking of con-
ditions. checking of manipulations. checking by retracing steps.

Cognitive style also affects the types of processes and strategies used to solve
problems. In fact, Adi and Pulos related field independencefield dependence

flexibility in situations where two problem-solving strategies are in conflict: "One
strategy had been used in the past. or is relatively simple. and the other strategy

must he constructed, or is relatively complex. In both cases, the simple strategy

is considered first,,but only the field-independent subject 'drops' this to consider

and construct the alternative strategy." (1, p. 150)
Firm connections between impulsivity-reflection and problem solving have

not been made, but some plausible hypotheses have been offered For example,
since reflective individuals are more inclined to take time to reflect, perhaps they

are also more inciined to use strategies that flow from reflection, such as under-
standing the problem by identifying the unknown, or redefining the problem by

constructing a simpler, but similar, 'problem.

Implications for Instruction

Two messages emerge from the research outlined so far in thischapter. there

exist significant individual differences in learning styles among secondary level

students and there are numerous areas of the secondary mathematics curriculum
where those differences arc likely to affect learning. In the face of these two mes-
sages..it is natural to wonder what role mathematics teachers can play in assuring

that learning tattes place despite individual differences.
As a start. teachers can sharpen their diagnostic skills and be more alert for

the kinds of differences described in this report. Cateful observation, coupled with

careful listening, will increase each teacher's sensitivity to individual differ-

ences.
Recognizing that Piaget's individual interviews are too time-consuming for

teachers who want to gauge the emergence of early formal thought among their
students, Renner et al. developed a paper-pencil test that comes very close to Pi-

aget's Displacement Volume task interview in measuring early formal thought

(23) For an additional example of how researchers probe for levels of proposi-

tional and proportional reasoning, readers should see Phillips's article (22) Even
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if teachers choose not to adapt the questions in the article for formai classroom

diagnosis, they will at least become more aware of the kinds of questions that il-

luminate the formal thinking stage.
Another rich' source of diagnostic wisdom is the several case studies men-

tioned in this report, whose interview transcripts provide a lively and relevant ac-

count of children's different approaches to learning mathematics, The carefully

chosen. non-directive questions of the researcher-interviewers can serve teachers

as models for their own classroom diagneisis of extreme dependencies on mem-

ory. skewed impressions of mathematical rules. and so on. With their observa-

tional,and diagnostic skills sharpened. thtse teachers can then focus on appropriate

instruction.
Some educators have been skeptical about the effectiveness of instruction in

significantly increasing the pace of cognitive developnient. In recent years, how-

ever, several researchers have argued against this skepticism. Klausmeier has tested

his own Cognitive Learning and Development (CLD) Theory and disagrees with

those who are content to wait for children to develop without stimulating that de-

velopment. (15) According to CLD Theory, the transitional period between con-

crete thought and formal thought is much longer than many previously imagined,

and instruction can ,hasten the transition for many individuals.

Yeotis and Hosticka discuss the teaching of students who are in developmental

transition. and they point out that what sets apart the thinking of concrete oper-

ational individuals from the thinking of formal operational individuals is not the

processing of information (how knowledge is organized in the mind and memory

for later use), but the ways in which knowledge is acquired and represented. 'For

the concrete operational learners ideas must be abstracted from their experiences

with the physical world and their actions performed on objects. whereas the for-

mal operational learner is able to work in a hypothetical deductive manner in which

reasoning processes can be applied to any chosen set of premises. (29. p. 558)

Consequently. they. suggest a three-phase approach to problem-solving in-

struction in the middle grades that accommodates the many students who are in

transition from concrete to formal operations. Phase I stresses cue attendance, or

having the students attend to all the relevant details potentially useful in solving

a problem. During Phase II students practice verbalizing their problem-solving

processes and strategies as they work on solving problems. Finally, Phase III takes

the verbalizing one step further, and students are trained and required to diagram

their problem-solving steps. Flow-charting is one recommended procedure for this.

suitable in the way it represents problem solving, for both concrete and formal

operational thinkers.
Phillips also addressed the role of the teacher in students' development. First

of all, she listed the factors involved in development as they have unfolded from

the work of Piaget and others: maturation, social interaction, equilibration, and

experience. (22) Maturation, of course, is that aspect of development that derives

from an individual's own interior clock and genetic scheduling. Individuals also
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develop through .mial inteiaition, especially with peers, and teachers ought to

nurture this aspect of development through classroom discussion.

Equilibration is the two-way process an individual uses in cognitive devel-
opment, first to absorb a new learning experience and adapt it to the conceptual

framew ork the individual uses to intepret the world and second, to restructure that

conceptual framework in light of the new learning experience Thus, as we de-
velop, we are constantly adapting new learnings to our world-view, and changing

our world-view in response to new !earnings. Phillips argues that, with careful

challenging, a teacher can help students in this process by providing "an envi-
ronment both familiar and novel, comfortable and uncomfortable (22, p 8) Thus.

for example, as long as teachers stay mindful of students' varying capacities for
propositional reasoning, occasional experienees with "what if, .." questions and
"if...then" statements are liable to help students in their development. In fact,

one study of seventh-graders' logical reasoningskills found a high correlation be-

tween the frequency of teachers' use of 'conditional reasoning (e.g., "If--then"
sentences) and the conditional reasoning skills of the students. (12)

About experience Pbillips writes. "Too often the high school subject area spe-
cialist assumes that someone else has provided the concrete experiences and ac-

tion-learning necessary" (for strengthening and moving cognitive development)
(22, p.8) As an ekample she points to proportional reasoning: "Measurement ac-
tivities using real tools and objects, making comparisons, using symbols for
measurement terms, using objects to demonstrate fractional representations, are

all ways to introduce understanding of proportion." (22, p. 9) Similarity of tii-
angles is a concept related to proportional reasoning, and it is a concept many high

school students find difficult to apply to mathematical problems. (4) The kinds of

activities suggested by Phillips, focussed on similar triangles, can guide students

to a full understanding of the concept.
The Szetela study cited earlier also-pointed to the role concrete experiences

should play in cognitive development at the secondary level . After determining

the kinds of misunderstandings about area and volume that are common among
secoildary students, Szetela wrote. "The use of formulas to obtain areas and vol-

umes ,,hould be delayed until students have had sufficient experiences to acquire

better understanding of the szemingly simple, yet complex. concepts of area and

capacity." (24, p. 11) Insofar as it is possible, such experiences should involve

students in Manipulating area and volume changes, to compare and determine.vvliat

are the relevant and irrelevant variables in the change processes. To cite some ear-

lier examples, students can experiment with the effects of weight change on vol-

ume displacement or the effects of shape changes on perimeter and area

According to a study by Threadgill-So,wder et al., manipulatives can also be

valuable for some junior high students in understanding logical connectives such

as "and," "or," "not." In particular, students in the study who had scored low

on standardized aclueveMent tests benefited from instruction in the use of logical

connectives that employed color-coded cards and attribute blocks, (25) In light of
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a recent national survey (10, 28) which reported that nearly 40% of all mathe-

matics teachers in grades 7-12 never use manipulatives in class, it is clear that many

secondary-level students might never have a full chance to learn mathematics

Conausion

Because of current brain research and research into information proci:ssing (for

example see 5 .and 18). the future holds some exciting prospects for adapting

mathematics instruction to acconunodate individualdifferences In the meantime,

insofar as they are able, teachers should try to ensure that each student's learning

IN consistent with that student's individual development and learning style As has

been pointed out, students will differ from one another in the ways they perceive

the world; in particular, in the ways they perceive the connection between math-

ematics and their w orld. Therefore, to the extent that teachers can help students

put geometric concepts and facts, the manipulation of equations, and so on, into

their own words and world-view, they will be helping them to make a bridge be-

tween their everyday world and the world of mathematics.
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How precise do we teachers need to be in our use of mathematical
language? On the one hand, texts seem almost too precisefor,
example, making a fine distinction between "reciprocal" and
"multiplicative inverse." On the other hand, many students seem
to be easily confused by terms like "least common multiple." They
see "least" and look for the smallest number.

Language serves a dual purpose in education. It is, of course, the primary Means

by which thoughts are communicated by one person to another It is alSo the means

by which thinking itself Is donewhen we think, we speak to ourselves and pmeess

our thoughts with silent words and sentences.
Mathen.atics is no One's native language. and so no one thinks or commtini-

cates totally :n mathematics, Yet, more than any other discipline, mathematics

requires carefultranslation, much as any foreign language does If the translation

breaks down, misconceptions grow and mathematical thinking suffers

Research into the interplay, between language and mathematics is in its in-

fancy, although it Is conceivable that future studies will uncover significant re-

lationships between the learning and use of language and the learning of

mathematics. (1 )
This report focuses on the language of mathematics and on thg effective com-

munication, of that language,'dividing the relevant results into two parts. com-

munication through reading and writing, as happens with textbooks and tests: and

communication through speaking and listening, when students interact with teachers

or peers. No matter what the mode of communication, however, the results re-

ported below bear out the central role of teachers in communicating mathemat-

ics: they.must not only monitor what is communicated, bulalso how it is

communicated.

Communicating through Reading and Writing

Difficulties that arise in the translation of mathematics_ are not due solely to

confusion,about vocabulary terms such as "quadrilateral" qr "least Common

multiple." Kane (I5) points out that mathematical English differs from ordinary

English in several ways, among which arc:
I. Letter. word, and syntactical redundancies differ. For example, single let-

ters such as x and y appear frequently in mathematkal English, as do words

such as "inrinite" or "greater," and sentences built around the condi-

tional phrase "if and only if."
2. Names of mathematical objects usually have a single &notation. unlike
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noun:, in ordinary English. For example, "point" denotes only one thing
in mathematics, but in everyday language it can have a variety of mean-

ings, from the tip of a cone to a seaside promontory
In their assessment t.f British students' understanding of mathematics, Hart

and her colleagues discovered several vocabulary misconceptions that arise typ-

ically when students cross from ordinary English to mathematical English (13)
The following excerpt of an interview with a I4-year-old girl illustrates the mis-
conceptions: (13, p. 213)

Interviewer: 10 sweets are shared.between two boys so that one has

'4 more than the other. How many does each get?

Faith: That's wrong, if you share they each have 5, one can't

have,4,more.

Kemme (16) points out two more language difficulties that arise for students

of secondary school mathematics:
3. Many mathematical expressions are hypothetical references, and

most adolescents find hypothetical reasoning very difficult until
they are between 14 and 16 years old. For example, both teachers
and texts begin the solution of many algebra problems with "Let
the unknown number be x." Taking,the perspective of an adoles-
cent, Kemme says, "Why should you name things that are yet
unknown 'to You? That's a very unusual use of language for 7th
grade pupiis. Moreover, it's a type of hypothetical reasoning with

unknown objects." (16, p. 46)
4. Many mathematical expressions refer to concepts that are new. In

some cases, a concept can remain unfamiliar to students even when

both teacher and textbook have taken its familiarity for granted.

For example. Hart reports about the British assessment: "It was
apparent when interviewing fourteen year olds that the words
'perimeter' and 'area' were not part of their normal vocabulary
and .had to be redefined." (13, p. 213) In the United States, the

recent National Assessment of Educational Progress revealed that

more than half of all thirteen year olds confused the concepts of

area and perimeter. (6)

Compounding the communication problem are the occasional textbook defini-

tions built aroundlerms and concepts which are themselves not well understood

For example, consider the following definition:
Polyhedron a three-dimensional figure all of whose faces are

polygonal regions.
Iri the definition, "three-dimensional", "faces", "polygonal", and "regions"

are all terms which could be misunderstood by many students.

Krulik (19) points out some examples of yet another difference between

mathematical and ordinary language:
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5. Reading mathematical language often does not rely on left-to-right

eye movement. As an example, consider what your eyes do in a

careful reading of 5/2 x 1/2 = =/3 x.

More than likely, they move from the 5 to the 2 beneath it to the

x, and so on in a combined downward-then-to-the-right move-

ment.

In their artiele about the solving of mathematics textbook problems,

Barnett. Sowder. and Vos (2) point out several other differences be-

tween ordinary language and mathematiCal language:

6. Mathematical word problems are more compact and conceptually

dense than ordinary prose. Often, several important ideas are

. squeezed into a single sentence, thus requiring a more aggressive

and thorough kind of reading than ordinarily required outside of

mathematics. For example: "To raise money for new playground

equipment. Mrs. Maple fifth-grade class sold 180 boxes of candy

at $I .50 a box and 40 T-shirts at $2.00 each. If each box of candy

and eaCh T-shirt costs the class $1.20 and the students wish to award

$3.00 in prize money, how much profit did the class make on the

sale?"
7. Ordinary prose usually possesses a continuity of subject and ideas

from sentence to sentence and paragraph to paragraph. In text-

books, word problems usually appear in groups of similar prob-

lems and,students develop tendencies to process each problem in

the same wa y. tendencies which are hard to break when other groups

of problems are encountered.

As a result of their mostly silent encounters with the quirks of mathematical

language, many students develop their own errant rules for mathematical lan-

guage. For example. Kent describes a misconception he has seen among stu-

dents, one that is especially insidious because it is :Is subtle,as it is misleading,

Clmllenged to simplify an algebraic expression like Yh h- some students will

offer the answer 2y + W., instead of the correct 2y + h. It might have been easy

for Kent to ascribe this to a mere oversight, if he had not probed further with one

particular student. The interview revealed that the student, whose grades in

mathematics were not bad, treated operators (such as +) the same as variables

(sucluts y and J). As a result, a numerator like 2yh hl becomes nothing more

than a string of symbols. and if you eliminate an It from the denominator, you

need :35,ily siiminate one It from the numerator. Thus, a seemingly innocent but

very comnion mistake revealed a gross misunderstanding of mathematical lan-

guage. (17)
From their observations and interviews of ninth-grade general mathematics

students, Confrey and Lanier reported similar misunderstandings:
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"Decimals were strings of numbers to be treated slglitIy differently, rather
than w holes and parts. Fractions were only one number over another. without
any image of pies. or ratios, or segments. or partitions of sets. Mathematics seemed
to be a set of symbols to operate on within rules and if those rules failed to fit
peat:Lily or errors were made, thcn the student was left with no recourse, except
to perhaps try to manipulate du: numbers more. and hope some answer would
come out even." (9. p. 555)

Another language-related misconception that is' resistant to change is "to
multiply means to make bigger." Bell and his colleagues found that even after
instruction aimed at correcting the misconception, when students between the ages
ot 12 and 16 ran into trouble when they were asked to compute the cost, at' $1.20

pergullon. of filling a 0.22 gallon can, two-thirds avoided multiplication "be-
cause'you've goea lesser amount. It's under $1.20, so obviously it's 1.20/0.22 or

something Iike that." (4, p. 405)
Because of the differences between ordinary language and mathematical lan-

guage uted abuse, researchers have generally shied away from using ordinary
reading tests to measure the difficulty of reading mathematical language. Rach-
ers and others who evaluate textbooks should be just as cautious With statistics

that presumably reflect the reading level of a particular textbook, If the reading,
gauge applied is general in nature, it may be inappropriate for that particular
mathematics textbook.

On the other hand, there is textbook reading research that can be helpful. Earp
and Tanner conducted a study with a 6th grade textbook, but 'their results arc likely
to be relevant to reading mathematics in higher grades. (10) They first counted
all the words in the text that could be classified as "mathematical words" that
is, words used in a technical way, such as "average," "commutative," "quad-
rilateral," There were almost 200 such words in the text, and the researchers' in-
terviews indicated that there was only a 50 percent accuracy in the students'
comprehension of the mathematical words. When the students w ere shown the
words in context, however, their comprehension increased. The first context was
in the form of sentences from the text ("Some customary units for measuring
volume are the cubic inch, the cubic foot, and the cubic yard."), and the ,
dents' oserall comprehension accuracy increased by 8 percent, When sentences
provided stronger contexts ("ib/unw is a way of telling about the amount of space
in something such as a box or container."), the accuracy increased by another 15

percent There seem to be two implications for teachers. faced with explaining
the meaning of common mathematical terms in their text, students may be inac-
curate on many of them, second, their accuracy can improve considerably if they
are allowed to dist,uss the definitions of mathematical terms and to consider them

in context.
Cohen and Stoser conducted a three-part study of obstacles to students' com-

prehension of word problems. The research focused primarily on sixth-graders,
but the results have implications beyond the sixth grade, (8)

In the first part of the study the researchers asked a group of gifted sixth- and
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eighth-graders to review typical textbook word problems and to rewrite them (in

the words directed to the students) to "make them easier for other students who

have trouble with math." From the rewritten problems Cohen and Stover iso-

lated three format vai iables from among those that dominated the attention of the

student reviewers: the absence of a diagram; the presence of extraneous infor-

mation; and the presentation of numbers in an order other than the order in which

the numbers are computed.
In the second part of the ,study, the researchers tested two groups of average

sixth-graders to assess the influence of the three variables. One group worked on

problems like type A below and the other group worked,on problems like type B

When they compared the two groups the researchers concluded that the three

variables did indeed affect the difficulty of w ord problems for average students

a. the absence of a diagram
A. (no diagram) In Amy's class, 8 students have brown eyes. This

is 25% of all the students in the class. How many students are

in the class?
B. (diagram) Same problem with

b. the presence of extraneous information
A. (extraneous information) Mr. Hopkins' total commission for the month

of September was $216, of which he gave $108 to his son. $81 of the

commission clime from the sale of two color televisions and one short

wave radio. What percent of the total commission was the commission

from the sale of this electronic equipment?-
B. (no extraneous information) $81 is what percent of $216?

e. the presengation of number.; in he word problem in an order other than

that required for the appropriate computational solution

A. (non-matching order) The Kant family has driven 270 miles since they

started their trip. The whole trip is 583 miles long. How many miles do

they have left to go?
B. (matching order) The Kant family is driving on a 583-mile trip. They

have driven 270 miles since they started. I low many miles do they have

left to go?
In the,third and final part of the study Cohen and Stover showed that students

can be trained to adjust w ord problems to decrease the difficulty presented by the

three variables. In the words of the researchers: "Instruction consisted simply of

alerting students to the fact that they should check to see if a word problem could

be diagrammed, or if,extraneous information could be extracted, or if numbers

needed to be reordered in order to fit the algorithm required to solve the problem

This was then followed by drills in which each treatment group practiced the

modification . . . That training lasted only three class periods; the differences

between expenmentals and controls were, nevertheless. substantial," (8, pp. 194-

95) This suggests one clear implication for secondary school: students generally

can benefit from discussions arid training that help them to develop a skill in sort-
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mg, out ilKoming data and for cons ening the data into meanfngful information

Diagramming as a fador in wising problems appeare in the study by Bell
and his colleagues. In the first part of the study, the researchers interviewed stu-
dents between the ages of 12 and 16 and reported. "All of the pupils who were
inters icwed were completely unfaimhar with the notion of using an abstract dia-
gram to enable them to decide whidi particular arithmetic operation is appropri-

ate." (4. p. 407) When the students were pros ided with diagrams, howeser. the
researchers reported that the diagrams enabled the students to estimate solutions
and that they frequently led to a possible stratcgy for solving a particular prob-
lem, often one that m, as not dens ed from a standard algorithm For example. dia-
grams often lex, students to choose repeated addition in preference to multiplication

As several studies hae noted, it is not only the weaker students who suffer
because of the special and often unfamilar demands of reading and writing mat h-
eniatic.s. In his summary of three surveys in mathematics education (II). Fey quoted
a teacher inters iewed in one of the surveys. "There is abundant es idence to show

that we are encouraging superficial learning in SGMC of oar (best students) Sure,
they do well on the tests. Our materials on hand encourage this. The algebra book.
for instance, is pure abstraction. The really good memorizer can go right through

and not really lime it at all." (11 p. 498) The validity of this teacher's suspi-
cions has been established in a recent study by Clement et at (7) They asked col-

lege students to do the following problem:
Write an equation for the following statement. there are six times as many

students as professors at this unix ersity." Use S for the number of students and
P for the number of professors.

On a w ritten test w ith 150 calculus students, 37 percent missed the problem
Among 47 nonsdence majors taking college algebra, the error rate was 57 per-
cent. The majority of students w ho had responded incorrectly had written GS -

P. instead of 6P S. and the researchers used interview s to determine the source

of tins reversal. They found two sources. Some students followed "word-order
matching," a literal, direct mapping of the \voids of English into the symbols of
algebra. For example, since "professors" follows "students" which follows the
number 6 in the problem, the equation becomes 6S = P. Another group of stu-
dents appeared to know that there were more students than professors, but still
wrote GS = P. In the words of the researchers who interviewed then "Appar-
ently the expression '6S' is used to indicate the larger group and 'P' to indicate
the smaller group. The letter S is not understood as a sariable that represents the
number of students but rather is treated like a label or unit attached to the number
6." (7. p. 288) lake the teacher quoted in the Fey summary, Clement and his col-
leagues find some fault in secondary aiathetnatics textbooks. They even point out
that sonie popular secondary textbooks explicitly instruct students to translate word
problems into equations by the often misguided word-orderjnatching Instead,
these researehers say, secondary students need more training in translating relia-

bly 'between algebra and other by mbo l systems. such as English, data tables, and

pictures." (7. p. 289)
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Kieran's research has highlighted another common misconception in stu-

dents' experience of algebra, one which seems to arise from a mistranslation be-

tween real world experiences and the use of mathematical symbols. Kieran calls

the conceptual scheme responsible for the misconception the "redistribution

scheme", and it is based on the notion that "taking something off one number

and adding it on to another does not change anything" (18, P. 7), a notion that

causes the following error: 37 4- x = 168 becomes 47 x = 158.

Kieran suspects that the scheme can be traced back to a real-life redistribu-

tion scheme practiced by small children: "We can envision the following scen-

ario: Three children dipping into a bag of candy and pulling out 5, 3, and 4 candies

respectively. One child (perhaps the one who pulled out three) suggests that the

child with 5 candies give away one of his to the child with only three. Then the

candies become more evenly distributed. In one sense, nothing has changed; the

total number of candies has remained the same." (18, p. 16) In other words, tak-

ing one number off and adding it to another has not changed anything.

Communicating through Speaking & Listening

Because their roots are in reading research, textbook research, or paper-pen-

cil testing, must of the studies discussed above have focused primarily on the

written word or symbol. These results indicate that translation skills should be a

significant part of a student's training in secondary level mathematics, Therefore,

listening and speaking should be as much part of that training as reading and

writing. As Bauersfeld describes it: "Teaching and learning mathematics is re-

alized through human interaction. It is a kind of mutual influencing, an interde-

pendence of the actions of both teacher and student on many levels. It is not a

unilateral sender-receiver relation . . The student's reconstruction of meaning is

a construction via social negotiation about what is meant and about which per-

formance of meaning gets the teacher's (or the peer's) sanction." (3, p. 25)

One aspect of communicating mathematics where this social interaction is

importan is logical reasoning. In their study of seventh graders' logical reason-

ing skills, Gregory and Osborne found a high correlation between the frequency

of teachers' use of conditional reasoning (e.g., "If. . . . ttien" sentences) and the

conditional reasoning skills of the students. (12) Generally, the interplay of logic

and languageas in the use of "some," "all," `neither," "nor"is a vulner-

able area for adolescents and results in confusion as well as frequent misuse. They

need modelling from teachers as well as ample opportunities to use logic and lan-

guage. Bye reports a 'study in which high school students were shown a variety

of shapescircles, squares, and trianglesin two sizes and three colors, each

labelled with a letter. The students were given the following task: "Write the let-

ters of all the shapes that are neither small and red nor big abd green." Eighty

percent of tenth-graders and sixty-five percent of students in grades eleven and

twelve were unable to complete the task correctly. (5)

Because their modelling is so important in communicatibg mathematics,
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teachers should Lulu% ate wnsistemy and an awareness of their ow n patterns of

language. A term like x b can be read as "A squared plus b". "the square of
A plus 1)". "I) added to A squared". "I) added to the square of A." Although a
teacher's inconsistent usage of these phrases without explanation could confuse
students, a discussion of the equiNalence of such phrases can help the students'
mathematical communication skills.

Conclusion

The interplay of languaite ith mathematics is a subject requiring much more
research. A comprehensiNe bibliography of the research done so far appears in
"Language and Mathematical Education" by Austin and Howson. (I)

Future research may highlight critical aspects of communicating rnathemat-
ics. but it will not lessen teachers' responsibilities. Because students can deNelop
deep yet surprisingly hidden misconceptions about mathematics; guiding stu-
dents to articulate their experience of mathematics and listening carefully to then)
will always be a major responsibility of mathematics teachers. Because text-
books fall %et), short of guiding students to translate between symbolic n.athe-
manes and other systems such as English, data tables, and pictures, teachers must

bear the major responsibility for helping students to develop these translation skills

Finally. because students model much of their behavior in communicating math-
ematics on what they experience in classroom interactions, mathematics teachers
must be iner alert to their own patterns in mathematical translation and com-
munication.
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BREAKING VICIOUS CYCLES:
REMEDIATiON IN.SECONDARY

SCHOOL MATHEMATICS



I am confused about teaching mathematics to high school students

with fifth- and sixth-grade skills. Sometimes I think we expect too

much of them in the mathematics classroom; at other times, I

think we expect too little of them. Is there any research
information about teaching these needy students?

The dictionary's definition of "remedial" is clear and simple: "intended to

correct or improve one's skill in a specified area." As it applies to the learning

of mathematics, however, the definition is incomplete. It implies that mathe-

matical skills may be all that need correction or improvement, and for a large

number of secondary school students, that is an oversimplified prescription. They

need to correct and improve their skills, but their needs for correction run deeper,

to the levels of understanding concepts and approaches to the learning of math-

ematks.
Unfortunately, some secondary school remedial programs neglect the deeper

levels and target only the skill level, and even then they usually consider only those

skills that can be measured easily through standardized testing. Yet research has

been clear in its implications about students' needs in mathematics: conceptual

misunderstandings and skewed approaches to learning mathematics are so com-

mon among teenagers that instruction which ignores them can only be partially

successful in the long run.
Becauk most of the other chapters in this book address various student mis-

takes and misconceptions, the theme of remediation runs through the entire book.

The purpose of this chapter is to bring together the results andTecommendationS

from those other chapters in a way that may highlight the threads that bind them

together and the recommendations for instruction that follow from them. Con-

sequently. the chapter is organized in the following way. First, topic by topic, we

review some of the major areas of need for students as the other chapters have

described them. Second, some themes that bind these needs together will be

identified. As Confrey has pointed out, a studert's performance in mathematics

has two aspects: a private one where comprehension resides, and a public one where

performance is judged. (7) Those teachers who are interested in remediation must

probe both aspects; therefore, the third section lists major recommendations for

instruction that can touch both the public and private aspects of learning mathe-

matics.

4
43



Mathematics Renu'diaiion

Areas of Need

Sob ing problems. By the time they reach high school, most students com-
pute well enough with whole numbers so that the need for remediation in this area
is not as pronounced as it is for other topics. However, when it comess to using

computational algorithms to sive problems -even' one-step word problemsmany
secondary students need considerable help. The help they need is often in the
strategies used, not in finding the correct answer. Booth found that many British

students, at all secondary lev elsivoid using the four operations for whole-num-
ber problems whenever they can. Instead, they rely on "child-methods" such as
counting, whm computational algorithms for the four operations would serve them
better. Such child-methods often lead to correct answers when whole-number
problems are involved and counting is possible, but students' lack of understand-
ing of the uses of the four operations hurts them when the situation changes, for
example, w hen fractions are brought into play. Without a seime of the meaning
of addition and without any apparent recourse to a strategy like counting, many
students become lost ith exercises like 2/1 + 1/2 = ?. They often draw a wrong
analogy w ith whole-number addition, which they have learned but whose mean-
ing they have never fully grasped, and they add numerators and denominators:

(2) In order to learn the full range of remedial needs common to
the topic of problem solving, teachers should read the chapter "Problem Solv-
ing. The Life Force of Mathematics Instructipn, PartOne." In brief, several re-
searchers have described how they perceive weak problem solvers differing from
strong problem solvers and we,repeat their rfsts.

In Whimbey's summary, weak problem solvers stand out in the following ways:
I. They fail to observe and use all the relevant faCts of a pi oblem.
2. They fail to approach problems in a sxstematic, step-by-step manner. They

niake illogical leaps, jumping to conclusions without checking them.
3. They fail to spell out fully any relationships within a particular problem
4. They are sloppy and inaccurate in colleging information and in carrying

out mental activities. (23. 31)
Confrey, Lamer, and their colleagues have conducted a study of ninth-grade

general mathematics cooses. (8, 21) One facet of the study concerned the abil-
ities that the Russian researcher Krutetskii has associated with good mathematics

students:
I. Information gathermg. the ability to discern the mathematical structure in

a given problem.
2. Generalmition. the ability to place a particular case under a known gen-

eral concept or to see something general from particular cases that is, to
form a concept.

3. Ret ersibilit.s. the ability to change from one train of thought to its reverse,
to reverse mathematical processes, such as inverse operations (e.g., mul-

tiplication,division, additionisubtraction), and direct and converse theo-
rems.

44



Mathematics Remedialion

4. Flexibility, the ability to accept a variety of methocls and to develop ease

and efficiency with them.
5. Curunlment: the ability to shorten mathematical processesfor example,

noting the cancellationpossibilities in 2/3 X 4/5 X % and concluding quickly

that the product is 2/5. (8, 18)

The researchers studied general mathematics students in the light of the five

abilities and they found the following patterns common to the students:

I. Information gathering. When general mathematics students were given

problems with essential information missing, problems with superfluous

inforthation, or problems with no questions attached at all, they would fre-

quently begin to calculate wildly. in any way possibie using the available

numbers. Often they didn't even notice that a particular problem had no

question.
2. Generah:anon. Irr-elevent variablesfor example, the position of a

triangle on the problem paperoften distracted general mathematics

students.
3. Reversibility Given 17 x 13 = 221 and asked to find 221 13 = ?, many

general mathematics students attempted the enOre calculation rather than

simply reversing and immediately noting that *.ne answer must be 17.

4. Flexibiht.t Shown several methods for sot, ing problems, many of the stu-

dents could not keep the different methods straight and, in fact. concen-

trating on a second method often hindered their reconstruction of the first

method.
5. Curtailment. Many of the general mathematics students observed and in-

terviewed in the study were unable or unwilling to shorten the logical pro-

gression of steps required for solving a problem and, when they did shorten

a logical progression successfully, they were often unable to reconstnict the

steps they had used. (8)

Fractions. One of the critical areas of need for many secondary studentsiT
fractions, which is the topic of a separate chapter: "Understanding Fractions: A

Prerequisite for Success in Secondary School Mathematics." According to the

National Assessment of Educational Progress (NAEP), only about 40 percent of

sevemeen-year-olds have mastered basic computation with fractions, with partic-

ular trouble occumng in the exercises involving unlike denominators and mixed

fractions. (3) Even when computation with fractions is done correctly, however,

it is often done with little understanding. as evidenced by the poor student per-

formance on NAEP exercises involving the estimation of the sum of two frac-

tions.
The variety of errors made by students in computing with fractions makes it

a particularly knotty topic for remedial instruction. Lankford documented 22 dif-

ferent errors students make in figuring out Y4 1/2 = ? (22). Furthermore, once

the type of error has been identified, it is also important to trace the source, For

example. Vinner et a/. presented to students between the ages of 13 and 15 sev-
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eral straightforward fraLtion addition problems such as r'2 + 2 = ? (29) Even

among those who made the mistake of adding numerators and adding denomi-
nators, the researchers were able to isolate seNeral sources, including a wrong

1 xanalogy with fraction multiplication ("If 1/2 x 2/3 = = 26, then
2 x 3

probably ½ 2A = = 5 and a wrong m,terpretation of symbols (no
2 3

real meaning is attaLhed to the fraLtion line between numerator and denominator,
so since addition is Lalled for, students figure they might as well add the things

that Lan be paired together, nainely, numerators with numerators, denominators
with denominators).

Detima1s. The NAEP assessment revealed tbat about than 60 percent of sev-
enteen-year-olds Lannot identify .625 as the decimal equivalent of Thus, frac-
tion-decimal equkalenLy is a topiL %here many secondary students need remedial
help, as is the topiL of decimal place N al ue . Bell and his Lolleagues conducted a

study among less able fourteen-year-old British students to identify, then to re-

mediate, Lommon mistakes and misLonceptions about decimals. (1) Their inter-
Niews revealed place-value misconceptions such as ".45 hours is 45 minutes" and

"0.8 . . that's about an eighth."
Another rather deep misconception identified by Bell et al. was the convI)c-

tion that, no matter the numbers being multiplied. "multiplication gives an an-
swer bigger than either of the numbers being multiplied." This misconception
tripped up many students on problems like "If gasoline is $1.20 a gallon, what
is the cost of filling a 0.22 gallon can?" Even students who had recognized mul-
tipliLation as the route to solution when the capaLity of the can was 8.6 gallons,
were thrown off by getting a price smaller than $1.20 when they multiplied
S1.20x0.22. They were inclined to pull back from multiplication and to look for
a way to produce a price bigger than $1.20. The research team designed some re-
medial instruLtion aimed at these deLimal difficulties, we will discuss their strat-
egies later in this chapter.

Percents. According to the NAEP, the overall performance of secondary stu-
dents on percent exerLises was extremely low. (3) In particular, only about half
of soenteen-year-olds responded correctly to basic concept exercises like, "Ex-
press 9.100 as a percent," and only about a third of scventeen-year-olds were
sucLessful on exercises invoking any sort of operation with, or application of,
percents - for example, "What is 4 percent of 75?"

Measurement. ALLording to the researchers who reported the results of the
National Assessment of EduLational Progress in mathematics, "Performance on
perimeter, area, and N lu me exerLises was among the poorest of any content area

on the assessment." (3, p. 98) The frequency and severity of measurement mis-
takes and misunderstandings is Llear from the following NAEP result. less than
20 percent of seNenteen-y ear-olds were sucLessful in finding the area of the right

triangle:
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Booth reported that a disappointingly small percentage of British teenagers were

successful'on a similar exercise, but he sensed the influence of the child-method

of counting on many students' approaches to area problems and,-in fact, to all

Measurement problems, (2) Whereas less than 50 percent of fourteen-year-olds

were able to find the area.of

3 cm

4 cm

during interviews, nearly twice as many found the area of a similar triangle when

was presented on a grid, because. Booth claims, counting of units was possi-

ble

Geometry. For a more thoro igh trent uent of the facets of geometry where

students struggle most frequently readers should refer to the chapters "The Path

to Formal Proof" and 'Re Learning and Teaching of Geometry." Perhaps the

area where need shows up most clearly is proof, and though proof is not a topic

to which the word "remediation" is usually attached, it is a topic where many

students' skills are in dire need of conection and improvement. The study by Senk

and Usiskm showed that even among students who have had a year of high school

geometry, pnly about half can do more than simple geometric proofs. (25, 28)

Worse yet, their study showed that more than a third of students who enter high

school geometry courses do so without the appropriate prerequisite knowledge and

skills, such as knowledge of the various properties of-geometric figures ("The sum

of the angles of any triangle equals 180°") and the interrelationships among geo-

metric figures ("Any square is a rectangle, but not all rectangles arc squares.")

Algebra. Again, readers who want a more detailed description of stuttent dif-

ficulties with algebra should read the chapter "The Learning and Teaching of Al-

gebra." Bnefly, the difficulties that seem the deepest aad most resistant to change
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are students' understanding w hat an equation is and what a variable is. Kier-
an's researLh has led her to LonLlude that many students enter algebra w ithout an
appropriate bridge with arithmetiL. and since arithmetic equations are action
statements in whiLli numbers are Lombmed to produce an answer. the same con-
Leption takes root in algebra. (13. 171 What these students miss is the aspect of
tv,ciletke in the use of equation;, and so fall into numerous trap-s-as they strug
gle through beginning algebra. For example. a common mistake arising from
overemphasizing the down aspeLt of equations is to approach an equation like
3 x + 2 = 14 + 12 by marching through from left to right and solving
3 x + 2 = 14 as x = 4, and ignoring the influence of + 12 on the statement of
equivalence.

The work of Wagner, the work of Ilan, and the work of ClCment. Lochhead
and their Lolleagues have illustrated the v ariety of difficulties that can arise for
students if their understanding of the meaning of variable is at all skewed (6. 12.
24, 30) For example, there are many students for whom variables in equations are
lab,is tor objeLts. rather than number representatives. Under the influence of that
misLonLeption. a statemeht like. "There are 10 times as many words (W) as sen-
tences (Si." is often translated into the equation lOW = S. rather than the cor-
rect 10S = W,
Behind the Mistakes

By the time students reach high sLhool, they have behind them enough years
of mathematiLs to have strung and hardened impressions about the subject what
it isAbout. how it works, why it is taught. and how it should be learned. For many
students, those impressions are far from conducive to good mathematics, learn
mg. AN Confrey found out in her student interviews, it is not uncommon for stu-

dents to maintain that rulcs suLh as those for lining up.decimal points in addition
and for "Lounting in" deLimal points in multiplication could just as easily be re-
versed. (7)

Thus. the mistakes that require remediation in secondary school mathematics
are often the outgrowths of impoverished impressions of mathematics, Further-
moreis Lochhead points out, older students who are slow in learning mathe-
matiLs are probably stuLk with poor mathematical learning skills, (23) Therefore.
in order for an attempt at remediation to ha% e any hope for success, it must deal

ithja/se improsion., and poor learning skills as well as with the mistakes they

engender. The task is a diffkult one, graphically described by Lochhead. "Poor
learning and thinking habits Lan perpetuate misLonceptions about mathematics
These imsLonLeptions Lan in turn aLt to discourage careful thinking by making it
appear unrewarding. The task faLed by the teacher of remedial mathematics is to
break this vicious cyLle," (23, p.3) Whimbey's list, cited earlier in this chapter,
enLapsulatcs some of those poor learning skills. inefficient observation and use
of reioant facts. sloppy and inaLLurate Lollecting of information, a failure to pro-
Leed through solutions in a stcp-bystep fashion, settling instead on illogical leaps
to conclos:on'without checking.
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Lankford noted a special ease of the last phenomenon when he interviewed

seventh-graders to determine the major behavioral differences between students

who are gt:od at computation and studcnts who are poor at it. He found that the

poor computers he observed often switched to something else that would produce

an answer whenever they ran into difficulties using a computational procedure.

Frequently. their chosen procedure was remote from the proper procedure. but

getting an answer seemed the dominant goal. (22)

The belief that the primary aim in mathematics is to get answers is wide-

spread among mathematics students, even among those who are relatively suc-

cessful mathematics learners. It is especially common aniong the less successful.

however, and is an imposing obstacle to effective remediation, In their study of

ninth-grade general mathematics students.. Confrey and Lanier reported: "We found

evidence of this focus on the answer in students' pursuit of the problems in in-

formation gathering, in their lack of flexibility and subsequent preference for a

single method, in their quick. but local generalizations and in their erroneous

eurtailnient." (8. p. 554)
A related theme identified by Confrey and Lanier was symbolic manipula-

tion: "Mathematics seemed to be a set of symbols to be operated on within rules

and if those rules failed to fit perfectly or el rocs were made, then the student was

left with no recourse, except to perhaps try to manipulate the numbers more, and

hope some answer would come out even." (8, p. 555) As reported in the chapter

"Individual Differences Among Mathematics Learners." research has shown that

many students at all secondary levels are still at the developmental level where

learning must be facilitated by concrete and pictorial representations of concepts.

What Confrey and Lamer have observed is the nightmare that can arise when those

representations are not a consistent part of classroom instruction for the students

who require them.

Remedial Teaching Strategies

Hart reported on the extensive British study, similar in purpose and scope to

NAEP, called Concepts in Secondary Mathematics and Science (CSMS). The

subjects were students between the agesof I I and 16, and one of the more strik-

ing conclus;qns was the widespiead need for concrete and pictorial. as well as

symbolic, representations of concepts. Hart wrote: "It is impossible to present

abstract mathematics to all types of children and expect them to get something out

of it. It is much more likely that half the class will ignore what is being said be-

cause the base on which the abstraction can be built does not exist." (12, p. 210)

Several studies have shown the effectiveness of using concrete and pictorial

representations to teach adolescents fractions and concepts related to fractions.

Karplus. Kurtz. and their colleagues have conducted a series of studies of pro-

portional reasoning. Two con'clusions from their work are:

I. Adolescents' progress with proportional reasoning skills does not hinge on

cognitive development alone. Often their ignorance of or inability to use
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fractions stands in,their way also. (16)
2. Using concrete aids to measure proportional amounts. many adolescents

can improve their proportional reasoning skills significantly, and in a way
that leases them more motivated to learn such skills than are students who
appivacti proportional learning without concretc aids. (20)

Dee. \Norked with remedial students in grades 10, 11, .1nd 12. She dJed the
students into two groups and administered two tests to both groups on fraction
concepts and skills. Nun alence and comparison of fractions, area and number
line models of fractions, and addition and subtraction of fractions. One of the tests
was ritten, the other involved only concrete or manipulable tasks. One group
took the concrete test first, then the written test, the other group took the tests in
reverse order. Students mho took the concrete test first were more successful on
the mitten test than.the other group. implying that learning probably occurred
during the administratioq of the concrete test. (10)

In a remedial program doeloped from their research. Hershkowitz et al. used

the following chart. m ith success, when teaching students how to expand. Com-
pare and add fractions. They suggest that its use encourages students to see frac-
tions as quantities. and not as separate whole numbers paired together. (14)
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As described in the chapter -The Learning and Teaching of Algebra." Kieran
and HerscOv Ns determined that many difficulties encounterizd by tutlents in al-
gebra result from their hav ing made some false generalizations from, and weak
bridges to, arithmetic. Since the focus of the use of the equal sign in arithmetic
is to, describe action resulting from numerical computations, it is not almays a
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straightforward adjustment tor students to deal with equatiOns as equivalence re-

lations. Kieran and Herscosics report success using a \carefully planned instruc-

tional s. qtknce that bridges arithmetic and algebra. At one critical juncture, when

the students are able to construct arithmetic identities like 5 x 5 = 30 5, they

are asked to consider identities with a number covered up by a linger

+ 6 2 = 10 + 8 5

Later. more pictorial and symbohc rePresentanons of equations are used, but the

researchers are convinced that it is essential to lead in to the later representations

with this more concrete representation. (13, 17)
Also reported in the algebra chapter is the finding by Rosnick and Clement

that, by the time many students reach college, they have swung too far the other

way in their understanding of the meaning of equations. By then they have lost

much of the sensc of action in equations, seeing them instead as static compari-

sons of labels. Thus 6$ = P is read as 'there are six times as many S's as P's,"

rather than the mathematically correct "P is the number equal to 6 times S" or

"There are six times as many P's as S's." On the basis of their research Rosnick

and Clement make the following two recommendations:

1. feachers should emphasize that variables stand for number. They must be

consistent in this emphasis, even watching that they set up equations with

statements like "Let A stand for the number of apples," and not 'Let A

stand for apples."
2. Teachers shouR1 watch for an inclination on the part of students to view

equations in a static way and to emphasize to them that equations represent

active operations on variables that create an equality. (24)

Fhreadgill-Sowder and Judi' conducted a study in which they compared con-

crete versus symbolic materials in teaching logical connectives like 'or", "and".

and "not" to 7th-graders. The concrete materials included attribute blocks of

various shapes. The instruction took three class sessions and, when it was com-

plete, a test on logical connectives was taken by the students. Among the lower

achievers in the group, those who learned through tbe use of the concrete mate-

nals did better on the test than the group of low achievers who learned through

the symbolic approach.,(26) Suggestions for activities using attribute blocks and

pictorial Methods to teach logical connectives to junior high students can he found

in the book Actmaes jor TOPS, A Progrwn in the Teaching ofProblem Solving

(4)

Many secondary students require remediation for their arithmetic skills Kulm

has compiled a collection of suggestions for remediating the arithmetic skills of

ninth-grade general mathematics students. (19)

According to the study by Confrey and Lanier, remedial success in the gen-

eral mathematics classroom ma) require some careful self-examination on the part

of general mathematics teachers. ln particular, when the researchers observed

teachers who taught both general mathematics and algebra, and compared their
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behavior in eaLli type ol t.lass, they found that they tend to act differently from
one class to the other:

I. f hey give the general mathematks students much less direct instruction
tin light of the e [dem, desclibed in the chapter "Effective Mathematics
Nat.hing", that sui.cessful junior high mathematics teachers spend more
note in Llass discussion and lecture. this phenomenon in general mathe-

matics classrooms needs to be changed.)
2. Though general mathematics students spend most of their class time doing

homework and indiv idual problems. they get less assistance w ith their
seatwork than do thew counterparts in algebra. They also get less encour-
agement and less opportunity for discussion. (21)

Lanier has pointed out that general mathematics classes lack the "ripple ef
feu" seen in algebra classes. where a core group of students often grasp content
quickly, respond to the teacher at critical moments, and. in doing so, help to
communicate the content to other students. (21)

ALL.ording to Loi.,116.tad, successful remediaL programs must be quite differ-

ent from the typical general mathematics program described by Lanier In such

programs, **students must be shaken out of the memorize-regurgitate cycle." they

must plave major emphasis on getting students to think actively." and their stu-

dents must learn to-dist.over their own approaches to solving simple problems
before they can appreciate the more elegant designs of others " (23. p. 14)

The kind of student-centered, process-enriched approach to remedial teach-
ing that Lok.hhead recommends was at the center of an experiment in instruction

Lamed out in the Calgary Junior High School Mathematics Project Although its
purpose was not remediation. as design could be adapted and, since the focus was

the diffiLult topic of frat.tions, remedial teachers should take note of the re,alts,
The objective of the eleven and one-half week program was to facilitate and

enni..11 seventh-graders' learnmg of fractions through mathematical investiga-
tions. In partkular, the students experimented with concrete materials, recorded

what happened in the experiments, formulated questions. %rote up accounts of
the experimental results, and applied the results to practical situations Not only
did the experimental group's achievement improve significantly when they %sere
vompared with a group of students learning from a regular textbook, hut they also

displayed sigmfivantly greater enjoyment of fractions than the students in the regular

group. Furthermore, the researchers noted a signifkant improvement in the ex-

penmental students' ability to give explanations, probably due to their reg re-

cording of experimental results. (11)
All of the researi.h Lited so far leads to the conclusion that educators must de-

sign remedial programs in which students are taught to think, to experiment, and

to discuss. These are not simple goals. and teachers should take advantage of every

proven instrui.tional aid they Lan. Concrete materials have proven their worth in

remedial instruLtion and so. in recent years, have handheld calculators

In their study of student diffkulnes ith decimals, Bell et al. designed some
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calculator-based instmcnon to remediate two of the most glaring difficulties: a lack

of understanding of decimal place value and a deep-rooted conviction that "mul-

tiplication always makes bigger," (I) They were able to produce significant im-

provement in the students' understanding of place value by involving them in

exercises like the game called Getting Closer, played in pairs, in which one stu-

dent chooses a low number, the other a high number, and each puts his or her

number on a calculator screen. The students then take turns, with the first adding

any tion-whote number each time to the number on the screen while the second

student. with the higher number, subtracts non-whole numbers. Thus. the num-

bers on the two calculator screens approach each other. The first player to pass

the number currently on the other player's screen is the loser. The players learn

quickly that a' knowledge of place value is an important advantage when the two

numbers are close to each other.
There was also improvement, though not as significant, in students' under-

standing of the effects of multiplication. One of the teaching strategies was to in-

volve the students in a game called Target: Here are the rules.

I. Player I enters any number onto the calculator.

2. Player 2 has to multiply this by another number so that the answer will be

as near to the target number, 100. as possible.

3. Player I then multiplies this new answer, trying to get still nearer to 100.

4. The players take turns until one player 'hits" the target by getting any

number between 100 and 101 on the calculator display.

Creswell and Vaughn designed calculator materials to teach decimals and

percents. over an eight-week period, to ninth-grade general mathematics stu-

dents. On a posttest measuring the level of achievement over the eight weeks, the

calculator group scored significantly higher than a group working during the same

period with a standard textbook. (9)

Ninth-grade general mathematics was also the focus of Toolec's calculator study

Fog six months, students were taught as usual, with the exception of one day a

week when they used calculators. In the six months between pretests and post-

tests, the students gained eight months more than a similar group who used no

calculators. The breakdown into subtest gains was a's follows: 7-month gain in

computation, 5-month gain in concepts, 1-year gain in applications. (27)

Microcomputers also promise help in remediation Howe and his colleagues

conducted a study of the effects of integrating the teaching of programming in the

LOGO language into a remedial mathematics program for middle-school stu-

dents. The researchers supplemented the students' normal quota of mathematics

work with microcomputer work one hour per week. Programming in LOGO was

taught during the first year; mathematical applications of LOGO were taught the

second year. At the end of the experiment. the LOGO students were marginally

better than their non-computer peers in algebra topics like solving for r and form-

ing equations. Considering the growing evidence of the importance of student

awareness, thinking, and discussion in remedial classrooms, perhaps the most
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signifivant result ol the study 1, ,Ls the observed greater propensity of the experi-
mental students to thsLuss matheniatival issues and to explain their ow n mathe-

matical difficulties. (15)

Conclusion

Researa that toadies on remediation in seLondary st.hool mathematics leads
to one overriding Lonvlusion. in orda to Lorrevt and improve students' mathe-
mauLal learning. it is uot enough to Lomentratc an isolated mistakes or on iso-
lated skills.

Short-terni efforts produce, at best, short-term effeLts, and we mathematics
eduLators must ami tor effects that last longer. The teaching that will produce those
effevts must indude t,areful observation and diagnosis of the sources of mathe-
matival diffivulties and efforts to Lhange remedial students' thinking skills and their

ays of approaaing matheniatiLs. as k ell as efforts to remediate their skills in
finding correct mathematical answers.
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PROBLEM SOLVING: THE LIFE
FORCE OF MATHEMATICS

INSTRUCTION

PART ONE



Many of my students make quick attempts to solve problems.
' Whenever the attempts fail, they just as quickly give up on solving

the problems. What are some of the underlying reasons fir this I

tendency? More generally, what sets apart persistent and successfu
problem solvers from unsuccessful problem solvers?

Problem sok mg is the direction toward which all mathematics instr ction

should point, w ith teachers always alert for opportunitits to widen. deep In, and

enrich their students' problem solving ability. Problem solving is, unde standa-

bly. one ot the major concerns of secondary school mathematics teach rs. with;

close ties to all of dim other curricular concerns. Thus, it is also a'lhemeithat runs

througli all of these Research Whlwi Reach chapters, touching some 'topics di-

rectly, as III the case of geometric proof, and touching others indirec4. as in the

discussions about estimation and remediation.
As a topic for research, problem sok ing has afoused intense in.rest among

varied groups. The results, opinions, and speculations of researchers ,{vriting about

problem solving fill v olumes. Often the questions they have raiseciand the tasks

they have undertaken seem far removed from the classroom For example, what

role does memory play in problem solving, and how should inf i-mation be or-

ganized in memory lot use in problem solving? What can be lea ned from the ar-

tit icial imelligence of sophisticated computers about the efficie t organization of

information for sols ing mathematical problems? What are th relationships be-

tween mathematical problem soh mg and problem solving in other areas for ex-

ample, in science? ,

Other researchers have studied the numerous aspects of the classroom teach-

ing ot problem solving. Ironically, the widespread interest in iiroblem solving raises

a problem for teachers. how to extract from the mass of articles, reports, and books

on problem solving w hat is most relevant to their classrooi» mathematics instruc-

tion. Fhe teacher whose question heads this report has/focused on a very basic

concern in problem solving instruction, students not thinking through, or even

about, the mathematical problems they encounter That this condition is wide-

spread was confirmed by the most recent National Assessment of Educational

Procress iN AEI)) in mathematics. w hich revealed that min students attempt to

apply a single operation to all the numbers in any problem they confront, even

numbers that are extraneous to the solution. Thus, nearly a quarter of the thir-

teen-year-olds tested solved the following word problem by multiplying 2 Y 5

x 52 = 520, 'One rabbit eats 2 pounds of food each week. There arc 52 weeks
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in a year. How much food will 5 rabbits eat in one week?" Another exercise asked

the students to decide un missing mformauon. "Maria left at noon to take a trip

on her bicycle. She rode 5 miles each hour. Later that afternoon. Amanda de-

uded to go after her. Anhinda rode 10 miles each hour. What else would you need

to know in order to find our how far the two girls rode before Amanda caught

Mane" More than half of the thirteen-year-okls and almost a third of the sev-

enteen-year-olds t.ould not identify what additional information would be needed

to solve the problem. (4)
In light of the NAEP results and the allied concerns of the teachers who were

interviewed for Research Within Reach. Secondao School Mathematics, this

chapter and the one that follows have one primary focus What can secondary

school teachers do to expand and enrich their students' thinking about mathe-

matical problems! As a first step. we discuss what is known about students' thinking

as they face mathematical problems.
In this dist.ussion a "problem" refers to a situation "in which an individual

or group is called upon to perform a task for which there is no readily accessible

algorithm which detemunes completely the method of solution (I3,'p 287) hos,

problem soh mg refers to new terrain for an individual. where no immediate path

to solution appears. Au.ording to this definition, a textbook word problem may

or may not be a problem for a particular student. dependint.,--bn whether that stu-

dent has a routine procedure that can lead directly to a solution.

Students' Thinking Processes

Researchers have been able to learn much about the thinking used by prob-

lem solvers. In brief, students' success at problem solving seems to be affected

by their cognime dtnelopmei.t and by their previous experience in. and impres-

sions of. mathematics. Suciessful problem solvers have much in common. hut

they can dif fer from one another in their styles and approaches to problems Fi-

nally. students can impro,e their problem-solving performance by attending to

appropriate guidelines, in particular. Poly a's four phases of good problem solv-

ing: (10, 14, 16)
I understanding the problem

2. devising a plan
3. carrying out the plan
4. looking, back at the solution

These conclusions are the results of many studies over the last couple of decades,

studies that used a variety of research methods. Observation of individual prob-

lem solvers at work has bcen used'extensively, and techniques are now sophisti-

cated enough to allow for observation of whole groups. Interviews of problem

solvers during and after problem solving sessions have formed the core of many

studies. Other studies have t,ompared different instructional approaches to prob-

lem solving, then wmpared the problem solving performance of students after the

instruction.
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Attempts to relate problem solving ability to other,Ognitive abilitiessuch

as spatial abilityhave yielded fess firm conclusions abd'ut the nature of problem

solving, except to suggest that problem-solving ability is not a single trait That

dit terent mixtures of abilities are needed for different classes of problems ( I)

Problem-solving ability and computational ability have been found to be related

tor younger children, but they are only remotely related for students of college

age. (13)
Comparing the khaviois. thought processes' and strategies of swcessful

problem soh ers with those of less, successful problem solvers has yielded some

promising results. In recent years. this approach has grown more useful because

observation techniques have been developed that can capture some of the subtle-

ties of successful problem solving. Thirty years ago, before the techniques were

developed and long before NAEP underscored the faulty thinking of unsuccess-

ful problem solvers, Bloom and Broder conducted a study of problem solving

among college students and were able to pinpoint some of the differences be-

tween good and poor problem solvers. (2) They noted some of the same phenom-

ena that am evident from NAEP. For example, unsuccessful problem solvers spent

little time considering questions but chose answers on the basis of a few clues,

such as a feeling, an impression. or a guess. In contrast, good problem solvers

pulled key ideas out of problems and brought relevant information to bear on the

problems. pt t.,:. problem solvers did not, even though they often knew the needed

information. In short, good problem solvers were much more active than poor

problem solvers. In a recent article discussing the Bloom-Broder study, Whim-

bey has suggested that there are "two major characteristics that distinguish suc-

cessful from unsuccessful students. the step-by-step approach: and carefulness

the concern and quick retracking when ideas become confusing. the rechecking,

reviewing, and rereading to be sure that errors haven't crept in. that riothing is

overlooked." (21, p. 561)
This research led to studies of the thought p, cesses that set successful prob-

lem solvers apart. The model for much of this work is that proposed by the Rus-

sian researcher Krutosku, whose observations of gifted mathematics students led

to his conclusion that a major difference between good and poor problem solvers

hes in their perception of the important elements of Problems. In particular. Kru-

tetskii noted the following about problem perception:

I. Good problem solvers can distinguish relevant from irrelevant information

in problems.
2. Good problem solvers can see quickly and accurately the mathematical

structure of a problem. In fact, talented problem solvers have what Kru-

tetskn termed a mathematical frame of mind, that is, the tendency to im-

pose a mathematical structure on their perceptions of the world.

3. Good problem solvers can generalize across a wide range of problems. Thus,

they might recognize the comparison of similar triangles as a common thread

that runs through a variety of problems. and so would be inclined to look
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for that thread in many geometric problems.
4. Ciood probkm solvers can remember a problem's mathematical structure

1 or a lone limo, Thus, if ;4 good problem solver has solved, or seen solved,

a problem in which two or more similar triangles are compared. and if the

same problem is posed again several weeks later, he or she will be in-
clined to recognize quickly that similar triangles are involved (II 13)

I hough good problem sok eis have characteristics in common that set them

apart from less successful problem solvers, research show s that there is plenty of

room tor individual styles in problem-solving In !bet. Knnetskii found some'very
capable.' students in mathematical problem solv ing who could work only in a

symbolic mode. while other equally capable students could solve problems only

through the use of diagrams and pictures. The students went to considerable lengths

to use their preferred sty les, even on ,problems where Kimetskii did not think them

appropriate. t 1.11 Sevei al North American researchers have produced similar
tmdings, hor example. Silver asked eighth-graders to separate a collection of
problems into categories of problems w hich they judged to be mathematically re-

lated, 1 he study confirmed a relationship bets\ een students' perceptions of math-

ematical structure in pioblems and their problem-solving competence Specifically.

unsuccessful problem solvers were more inclined to sort problems according to

question I k.rni, contextual details, or the presence or a common concept than ac-

cording to mathematical structure. For example. the two problems below are not

closelv related in mathematical structure. The first involves a direct application

of least common multiples where time is the unknown quantity and the second

involves an equation in one \ ,triable vs here the number or students is the un-

know n. Both problems do ins ohc time. however, and Silver found that unsuc-

cessful problem soh ers were more inclined than successtbl problem solvers to group

two such problems together as mathematically related. (1 8. 19)

A. Nickolai and Natashe are trained .:ircus bears who perform their act while

riding bk.) cies around a circus ring. Natashe can complete the circle in 4

iminnes, but it takes NIckola, ontites to make the entire trip They start

at the same point, and their act is o,; when they again reach the starting

point at the same time. I low long does their actiast?

B. l'here are 8 boy and 16 girls at an eleventh grkde committee meeting Livery

toy minutes, one boy and one girl leave togcther. I low many boy-girl pairs

must leave so that there are exactly three times as many girls as boys left

at the meeting?
I here are othei characteristics that set successful problem solvers apart from

unsuccessful problem solvers, For example, the range of strategies used in solv-

ing problems appears to be important. Webb worked with forty high school stu-

dents on an individual basis, asking them to think aloud as they solved a series

ot problems f rom algebra, geometry, and analytic geoinetiy , The interview data.

matched against the mudents' problem solving performance. led Webb to con-

clude that better probkm solvers use a wider range of strategies and techniques
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than do poorer problem solvers. (20)

Coal-Oriented Planning

Reflecting on her own research and on the research of others. Kafflowski re-

ported that goal-onented planning is closely related to successful problem solv-

ing in areas where it has been closely studied. namely , in geometry and in number

theory. Goal-oriented planning refers to several thought piocesses identifying the

goal ot the problem, identifying intermediate goals. if the ultimate goal cannot be

reached directly. setting down a plan of attackpossibly through trial-and-error.

making a table, or searching for a pattern. (8)

Goal-oriented planning is akin to what is called "thinking through piob-

ferns." Research confirms that it is an important part of problem solving, But how

can teachers nurture goal-oriented planning amok), their students as well as other

important parts of problem soh ing? Before proposing strategies. it is important

to take note ot Sonic ot the obstacles to problem solving which many secondary

school students face,
rhe first obstacle to consider is cognitive development As we discuss in the

chapter "Individual Differences Among Mathemthics Learners." many teenag-

ers are slow to develop cognitively into the stage called the formal operational stage,

wherein conditional thinking ("if-then" thinking) comc more easily to them and

they are not forced to "center" on single thoughts or variables: that is, they can

hold two or more variables 111 mind at the same time, Several Soviet studies have

confirmed that such centering does exist even among older teenagers, and Lesh

pointed to the bearing this might have on traditional classroom problem solving:

"I-or example, pawns reading 41 new mathematics text for the first time will center

on some points and neglect others, and they will reinterpret and perhaps distort

many ideas to fit their previous conceptualizations of the subject." Thus, an in-

clination to center might be one obstacle to students' thinking through mthhe-

ma tical problenis. (12. p. 159)

Another possible obstacle. alluded to by Lesh. is a student's previous math-

ematical expertence and the conceptualization of mathematics that grows from that

experience. For many students this conceptualization leaves little room for think-

ing through problems. based as it is on memorization, regurgitation, and the con-

viction that the sole purpose for doing any mathematical problem is to get the right

answer and, turthermore. that for each problem them is only one right way to reach

the answer. Almost 50 percent of the thirteen- and seventeen-year-olds in the re-

cent NALIP assessment agreed with the statement, "Learning mathematics is mostly

memorizing:" almost 90 percent agreed w ith the statement. "There is always a

rule to follow in solving-mathematics problems." (4).

Das narrow and distorted conceptualization of mathematics is widespread

among secondary school students. It is a phenomenon we deal with at length in

the chapters "Communicating Mathematics" and "Individual Differences Among

Mathematics Learners." Lochhead also touches on it in his discussion of the
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Bloom-Broder study cited earlier. Ile emphasizes especially the conclusion that
good problem solvers, quite simply . do more than poor problem solvers- more
planning. more checking, more reviewing, and so on:

I he inactivity of poor problem sobers could be att.thuted to laziness but there
is an alternative explanation. Poor problem sobers re less active because they
do not beheve there is ny thing for them to do. Their view about problem solving
and learning places them in the passive role of absorbing information and re
pealing it back. they think you either know the answer to a question or you do

not. (l. p. 2)
Kantowski saw signs of the same phenomenon in her research. In particular.

she had designed a teaching experiment that stressed several problem-solving
strAtegies with students. One was "looking back," whereby students were en-
couraged, once they thought they had reached a solution to a problem, to rev iew
w hat they had done, both w oh an eye toward checking nd also toward simpli
tying the solution, changing to a difkrent solution, or posing a new question The
students used the other strategies that had been stressed, but there wx, ,scant use
ot looking back. Kantow ski offered a possible explanation by pointing out that

most students come to expect one solution and one solution process for each
problem and so see little sense in looking further. (9) As the NAEP results cited
above indicate, this narrow and mechankal appreciation of mathematics is wi(le

spread among secondary level students. (4)
It w orking with problems becomes mechanical for students, w ith little un-

derstanding ot underly mg concepts. some fundamental misconceptions caii arise
and persist tor a long time. In their study , Clement, et al. asked 150 calculus-level
college students to write an equation for the Ibllow ing statemem: "There are six

tunes as many students s professors at this university." An appropriate answer,

ot course, is 6P S. but thirty-seven percent of the students missed the problem
and two=thirds ol the errors took the form of a reversal of variables 6S = P In-
terviews ot the students resealed what the researchers called a "self-generated,
stabie, and persistent misconception concerning the meaning or variables and
equations. As result, when the format of a problem fails to tit the mechanical
processes these students have come to depend on, their skill in -dealing with
mathematical problems begins to crumble. (6)

1 he alternative to has ing students rely oi . mechanical approaches is to de-

velop in them sanely of problem-solving processes froni which they can draw,

dependmg on what Is most appropriate for Rirticular problems. Unfortunately, the

quality ot pi oblems usually encountered in the classroom tends to make this al-

ternativ c les s kosible than tt should be. Days and his colleague% compared the
problem-sob ing prucesses used by eighth-graders w ho are formal operational
thinkers w ith those used hy eighth-graders 55 Ito are stilt concrete-operational
thinkers. In particular, they compared the processes used on problems with sim-

ple and complex structures: (7)
Example I. Sunpk ,strui:ure. A cow and pig together cost 56 dollars. The cow

cost 30 dollars more than the pig. How much does each cost'?
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Example 2: Complea structure. Jeff boueht 5. oranges and 10 apples for S1.65.

An apple and an orange Mgether cost 20 cents. !low much does

- one apple cost? How much does one orange cost?

The researchers discovered that on the complex structure problems the formal

operational students- used the following processes not used by the others: deduc-

tive reasoning, use of successive approximations, estimation, checking of con-

ditions, checking of maninlations. and checking by retracing steps. On the simple

structure problems. howeverboth groups tended not to differ in their use of

processesfor example. they drew diagrams and tried to recall similar prob-

lems. The researchers made the following comment about-the comparison: (7. p.

The fact that the concrete and formal subjects for the most Part did not differ in

process use on the simple structure problems suggests that the simple structure

problems may not have'cvoked the use of "high level" processes. If this was the

case, then many textbook problems probably fail to elicit the use of "high level"

processes, aIso. The latter statement is based on the fact that the simple structure

problems were typical of many of the problems found in seventh-and eighth-grade

mathematics textbooks.

Like the popular textbooksommercial
problem-solving tests are also a long

way from emphasizing appropriate problem-solving processes, In particular, Za-

lewski reviewed commercial tests to gauge their value in studying problem solv-

ing. (22.) He found them nor to be very valuable in such studies for three reasons:

a. Commercial tests overemphasize story problems.

b. Scoring focuses on correct responses only, not on the processes used by the

problem solvers.
c. The tests are tied to time limits which are too short.

Several problem-solving projects have produced activities, appropriate at the

middle school, and junior high school levels, which are designed to encourage the

use of what Days and colleagues,call "high level" processes. Interested teachgrs

at those levels can enlist the aid of thc projects. (5,17) Teachers at all levels can

benefit from the suggestions and problems jn the National Council Teachers of

Mathematics (NCTN) Problem Solving Yearbook. (10)

Conclusion

Sonic differences between successful and unsuccessful problem solvers, then,

are clear. Successful problem solvers are more active, use more problem-solving

processes and strategies, and have a different impression of and appreciation of

the experience of learning mathematics. "Part II of Problem Solving: The Life

Force of Mathematics Instruction" looks more closely at the role of teachers in

making these qualities available to all students.
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PART TWO



How can teachers increase their students' ability and willingness to
stick with solving problems, to think problems through, and to
appreciate that alternative methods of solution do exist for most
problems?

This is the second of two chapters on problem sok mg. The first chapter
Nisetched a profile ot the kinds of thinking Inv oh, ed in both good and poor prob-
lem sok mg The following table lists briefly the highlights of that sketch.

Successlid Problem Solvers . . Unsuccosful Problem Solvers . .

I. do more . re-reading, lecheck- I. proceed on the basis of few clues.

mg, reviewing.
2, are able to pull key ideas from a 2. often know what is relevant. but

problem, to distinguish between even when the> do, they do not
rele ant and irrelesant informa- bring the information to bear on
tion, and to bring relevant infor- solving problems.

mation to bear on a problem.
3. exhibit goal-oriented planningthat 3. do not. as often or as well.

is, they identify a solution and a plan

of attach.
4. use a wide %alloy of problem sob,- 4 tend to apply one operation in the

ing processes, including estima- solution of a word problem to all the

tion , recalling similar problems, numbers in the pronlem They per-
ceive mathematics as primarily
based on memorization.

5. perceive the mathematical struc- 5 tend to focus on question form or
tures of problems context (e.g., time problems or

distance problems).

b can remember the mathematical 6. cannot, as well

structure of problems.
7 can generalize across problems. 7. cannot, as well.

seeing mathematical threads.

rhis chapter describes what teachers can do to affect thL -th and quality of

their students' thinking about mathematical problems. In appioaclung this in-
stractional challengeperhaps their greatestteachers need to be aware of two
things. First ol all. resea. h is clear in concluding that students of all ages and all
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achievement levels can be induced to assume many of the behaviors and thought

processes associated w ith effectise problem solsing. often, their problem-solv-

mg achievement scores will improve at the saMe time.

Second. in order to improse student problem solving. teachers must integrate

problem solving w ith three instructional roles. they must model some aspects of

problem solving, the) must hut it directly some aspects of problem solving; and,

finally, they mustfin ila«te sonie aspects of problem solving

Modeling Problem Solving

teachers must model pioblem sols mg for their students. who should see their

teachers posing problems. actisely using strategies to push them through to so-

lution. and then posing new problems that spring from the ones just solved As

models, teachers need to be alert to the salues they communicate to students hi

this regard. Lester has written. "Problem-solsing instruction is most effective when

students sense two things. t I) that the teacher regards problem solving as an im-

portant act iv ity and (2) that the teacher acthely engages in solving problems as

a part of mathematics instruction." (1/. p.43) The recent work of Lochhead and

\Vhimbey leads to one additional salue to be communicated. (3) that the teacher

values each student as a problem solverthat is. wants t know and accept the

thought processes each student applies to niatheniaticd problems. regardless of

how much refinement those processes seem to need. (18.19.20)

Illus, before students can learn to be good problem solvers in the mathemat-

ics classroom. the) need sometIvog more than direct instruction They need to

see teachers modelling appropriate behasiors and they need to sense in their teachers

appropriate attitudes a:)out problem solving. Schoen and his colleagues con-

ducted a study to evaluate the effeetiseness of problem-sols ing materials they had

deseloped for grades 5 through 8. The) found sonie corroborating evidence about

teacher attitudes, namely. that a teacher's attitude toward problem solving was re-

lated positively to the problem-soh ing ability of that teacher; class (26.27)

Teaching Directly

Certain aspects of problem solving are appropriate for direct teaching For

example, Vos conducted a study in which he taught sixth-, seventh-, and eighth-

graders three techniques to be used to organize their approach to problems draw-

ing a diagram. approximating and verifying, and constructing a chart lie found

that not only did the students use the techniques once they had been taught them.

but there was also a relaaonship between the careful use of the three organi.zing

techniques and success in problem solving. (32)
Such specific techniques are called tool-skills by researchers, and they are

problem-solving prerequisites. the groundwork upon which effective problem-

soh mg strategies can be built. Included with the three just mentioned should be

the tool-skills of writing an equation. using a formula, and making numerical es-

timates. The results found by Vos and mentioned in related research recommend
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the teaching and regular reintorceinent ot them: skills as mechanisms for students

to use to attack problems in the most orgamied fashion possible

Bell and his colleagues discovered several interesting things about the strat-

egy cit drawing diagiams. They conducted a study of secondary level students'

f twines with word problems involv ing decimal numbers (2) In the first stage

ot the study, the researchas interviewed students between the ages of 12 and 16,

asking them to work on a set ot problems and watching for misconceptions that

arose and what strategies, if any, the students applied. The last stage of the study

invoked the use of calculator-enriched teaching materials designed to remedy the

identified misconceptions.
During the interviews the researchers encouraged the use of diagrams as aids

m solving the problems. The students' skills in making appropriate diagrams were

extremely hmited. In tact, all of the students were "completely unfamiliar with

the notion ot using an abstiact diagram to enable them to decide which particular

arithmetic operation is appropriate." (2, p.407) Diagrams draw n by the inter-

viewers, however, were found to be useful for three reasons:

I. Fhey removed the words from the problem and w ere then able to be used

as an independent, uncluttered statement of the problem.

2. They enabled the students to estimate solutions.
3. They frequently led to a possible strategy for soh ing the problem, but this

was rarely one ot the "standard" algorithms. (For example, diagrams often

led pupils to choose repeated addition in preference to imiltiplication ) (2,

p, 408)
Part ot the study 'S last phase invok ed training in drawing appropriate dia-

grams Though it proved to be a difficult strategy to use, diagramming served the

students well in clarify mg problemsfor example, in inducing discussions con-

cerning whether or not the operation to be performed was dependent on the num-

bers invoked in a particular problem. The example below illustrates how one

student used a diagram and a calculator to solve the problem:

A marathon is 26.22 miles long. Frank Shorter runs 11.9 miles per hour in a

marathon lkwv long does it take him to complete the marathon'1

5

kmon Awl

rnarcv6ron cows. 26.1).
Pori< 41%orter

5f401 c4" riutra

mAls

26 22-113
orrn.J,e0

kati% I how'
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Heurotto are mole direct problem-sob, ing strategies A eommon definition

is the following. A heuristic_ is d general suggestion or strategy. independent of

subject matter. that helps problem sok ers approach, understand, and/or effi-

ciently -marshal their resources in solving problems. (28. p. 315)) Some of the

more commonly discussed heuristics have already been mentioned or alluded to

in this report goal-oriented planning. trial-and-error, searching memory for sim-

ilar problems. seardung for patterns. 'working backward using a known objective

to construct a solution, looking back and posing a new yet related problem In the

past ten or fifteen years there have been numerous studies aimed at determining

the effectiveness of teadung the use of such heuristics. Generally. the results have

been positive. For example. Lucas conducted an intricate study of the effects of

heuristics teaching on the prublem-sols ing skills of college calculus students His

results, probably applicable to seLondary school students as well, indicate that

students who were taught heunstits regularly and in a variety of cOntexts, and who

were reinforced in their use of heuristics. approaclied problems in a more orga-

nized fashion than students who were not given ich training. (21) Going a bit

farther. Sc.hoenfeld has learned front his research that in order to benefit him)

heuristics training, students need-to be taught not only hot% to use heuristics. but

when t28) Thus, for example. searching for a pattern is approimiate for some typcN

ot problems and not fot others. As the) develop pattern-searching as an approach

to problem solving in then students, teachers should also discuss with them the

proper contexts in which the strategy should be used.

As a he cristic. trial-and-error is popular, especially among novice problem

solvers, and can be a building block fir the other heuristics Webb's research has

established that trial-and-error is valuable as a process supplementing the use of

equatiom- hot that It loses its value as a problem-solving aid if It is allowed to

replace the use of equations. (341 For example, word problems that involve only

whole numbers. like the following problem. can often be solved through trial and

error.

Sam has a roll of five-dollar bills that still leaves hint 10 dollars short of pay-

ing a 90-dollar grocery bill. How many five-dollar bills does he have')

No matter how adept students beLonte at sob, ing such problems through trial

and error. they vs ill probably falter quialy in the face of similar problems that

are not restricted to whole numbers, unless the) are skilled in setting up and us-

ing equations

Sam is walking 5 ndes an hour in a 90-mile hike. flow long has he been

walking when he stops to camp 22 miles front the finish?

Funhermore. teachers need to be generally cautious about trial and error It

is useful, but u ean overstay its welcome. Kantowski has stated that "without some

instruction (in heuristics, students generally revert to trial-and-error in solving

problems or do not attempt to solve them at all,' (10. p. 1;3)

One other aspect of mathematical problem solving sh9uld be taught directly
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Students need to learn that reading niatheniatkal word problems is different from

reading ordinary prose. Often multiple readings are required. with attention being

paid to vocabulary and relationships among variables. ( 11
In one recent study. Cohen and Stoser asked gifted sixth-graders to identify

what they thought were some characteristics of word problems that are most dif-

ficult tor average mathematic s students. The researchers selected three of the most

frequently mentioned:
a. the absence of a diagram:
b the presence of extraneous intbrmation:
L. the presentation of numbers in the word problem in an order other than

that required lor the appropriate computational solution.
In the second part of the stud) the researchers were able to conclude, by

mg a word problem test to a group of aserage sixth-graders, that these three sar-

tables did indeed affect the difficult) of word problems for as erage students In

the thud and twat part ot the stud). Cohen and Stoker showed that students can

be trained to ado:4 word problems to decrease the difficulty represented by the

three variables. In the words of the researchers:

Instruction consisted simply of alerting students to the fact that the) shduld

chcek to see it a word problem could be diagrammed. or if extraneous infor-

mation could be evracted, or if numbers needed to be reordered This was

then tollowed by drills in ss hich each treatment group practiced the modifi-

cation . That training lasted only three class periods, the differences be-

tween esperimentals and controls were. nevertheless, substantial (7. pp 194-

95)"

Although this study concerned sixth-graders. secondary school teachers can

adapt the techniques to pros ide the same sort of experience in analyring the read-

ing ot mathematics Another suggested technique is to hake students compose.

and then solve, their own word problems.

Facilitating Problem Solving

Some aspects of problem soh ing should not be taught directly Rather. they

must gross in students from their encounters with problems and from their class-

room interactions w nh then teachers and peers. Goal-oriented planning is an as-

pect ot problem solk mg that needs to be nurtured in this way, It must develop in

proNem solseis trom a gross ing awareness in them of the nature of mathematical

problems and ot then own thought processes as the) approach problems The re-

search ot Lochhead and Whimbe) and of others has confirmed that a student's

choice ot method in approaching a mathematical problem is not always con-

sciousindeed. often it is quite unconsciousand so awareness is critical to that

student's success . (18,19.20.35
Perhaps the greatest boost a teacher can offer students toward developing such

awareness is a classroom ens ironment where they arc regularly encouraged to
terbah:e their problem-sols mg experiences. Putting words to one's thinking often
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brings that thinkin4 to the conscious level. only then can a problem solver eval-

uate and refine the techniques used to solve mathematical problems In one re-

search stud), students who were asked to verbah:e what strategies they had used

on a piactice set ot problems w tire more successful on a subsequent set of related

problems than students who had not been asked to put their strategies into words

(*.y))

the researchers ot the Iowa Problem So Ismg Protect designed another tech-

nique to heighten students akareness of appropriate strategies for solving word

problems. t26. 27 In essense. the technique adapts Poly a's four stages of prob-

lem solving t 25) to a training program designed around calculators and a set of

problem cards, each of which t.ontains a problem and a set of questions The stu-

dents. trom grades 5 through 8. work in pairs on the cards and are expected to

attend to each of the four stages in turn. It IS the hope of the researchers that the

technique will provide ''a language vvhereby students can communicate what they

are doing and where they are having difficulty as well as a general framework for

attacking a problem (27. p.7) Ili:re is an example from one of the cards:

A one-dollar hill. a ten-dollar bill, a 20-dollar bill, and a 50-dollar bill each

weigh about I gram. Of course you would rather have 10 grams of $10 hills

than 10 grams ot one dollar bills Which of these two bags wmtd you rather

ha% e?

A.20 grains of S 10 bills
40 grains ot $1 bills
40 grams of $20 bills

13. 15 grams of $50 bills
70 grams of $1 bills
20 grains of $10 bills

I Get to know the problem. What does one 20-dot iar bill weigh?

Will your answe: be a number of
grains, a number of bills, or one of the

bags?

2. Choose what to do How will you find the amount for
bagA?

3 Do it Find the value of the money in each
bag.

4. Look back over what was done. Did you find that both bags contained
more than SI .000?

Write a problem similar to this one.

In a comparison between a group working with this training program and a

stuuents in a traditional program. the researchers found that the program
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produced an attitude toward solsing word problems that was significantly more

favorable than the attitude in the traditional group. (27)
Bloom and Broder had unsuccessful problem solsers work in small groups with

tutors, taking turns sob, ing problems out loud and reading the solutions of more

successtul problem sob. ers. The researcher s. reported that the students generally

became more aware ot the gaps and inadequacies in their own thinking, they mad

problems with more care. and they reasoned more actively and more accurately

(3 )
Inspired by the research of Lochhead and Whimbey. Whimbey has developed

an approach to learning problem sok ing in which students work together in pairs.

one student Noising the problem out loud, the other student checking on the ac-

curacy ol the work, and insisting that the first student keep serbalizing Further

yesearch needs to be done to determine the program's effecuseness, which Whimbey

maintains does not teach a method of problem soh ing, but rather develops cer-

tain atu tudes including;

I a faith in persistent systematic analysis of problems:

2 a concern for accuracy:
3. the patience to employ a step-by-step procedure,

an avoidance of wild guessing.
5 a determination to become actively involved with a problem

(18 35)

In real problem-sols mg situations outside the classroom, good problem sol-

sers do not always work in isolation. Quite often. they are very good question-

askers who thrive on talking through solutions to problems Learning to akk ap-

propriate questions about mathematical problems is not a simple task for many

people. Recognizing this. Lesh has recommended small group activities in the

classroom, especially for less successful students. In his words. "Many individ-

ual problem sok mg strategies are quite difficult for average or below-aserage ability

oungsters. But. when these internal processes are externalized in the context of

small group activ mes. they are often easier to describe in a form that is under-

standable to lower ability problem solvers." (15. p. 157) Small group activities

monitored by the teacher can free students from narrow. pahaps even distorted.

ways ot looking at a problem and help them to see the problem in a new light

kantowski suggests another technique to facilitate deeper thinking by stu-

dents about problems. posing problems with missing information, followed by

questioning the students to categorize the missing information (12) In general.

as the NAEP reviewers were firm in recommending. a steady diet of teacher heu-

ristic questions can do wonders to facilitate problem solvingfor example, "Can

the problem be solsed with the given informationr: "Have you seen a similar

problem be tore ?' (5) Teachers can benefit from the materials of three programs

that have been developed to integrate the use of heuristics into problem-solving

activities (6..14, 27)
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Sources of Mathematical Problems

In order to honor the suggestions gie en so far in this report. teachers must look

beyond the boundaries of textbook word problems See emi years ago. there seemed

to be few sources ot such eal or non iounne problems for teachers. but that sit-

uation has changed. Sources such as references 8, 9. 13. 23. 24 suegest prob-
lems, w hile references 16 and 13 pros ide listings of further sources of problems

Furthermore, there arc IhM more guidelines to help teachers deselop their own

problems. For example. research has shown that students can transfer problem-
sole mg skills. such as the use of heuristics, from one problem to an other if the

o problems are at least moderately related mathematically (29) Ilence. teach-

ers should support their instruction with sequences of related problems. provided
they and their students do not get catieht in the trap of working only in clumps of

related problems. a habit that discourages flexibility and encourages a rote ap-
proach to problem suit ing. Using one problem to pose questions that result in a

new problem is one way to construct a sensible sequence of related problems In-
terested teachers might find the work of Walter and Brown on problem posing to

be a source of inspiration and an aid to,developing this skill. (33)
s Ixantost ski provides a simple example of transforming a routine textbook

problem into a probtem that would be non-routine for many secondary school
students. The transtormation from Problem I to Problem 2 can sere e as a model

lor writing more advanced non-routine problems (12):

Problem I. Maria bought a hamburger for S.90 and a coke for $ 30, If the lo-

cal sales tax is 5%. how much change should sfie receive if she

gives the clerk S2.00?
Problem 2 Maria has exactly S2.00 and would like to spend it all on her lunch

The menu includes hamburgers at S.90. hot dogs at $.80. onion
rings at $.60. french fries at S.50. and colas at 5.30. S.40. or S.50.
The sales tax is 5e4 What could Maria have for lunch?

Conclusion

Among mathematics teachers, nothing evokes an appreciation of the rew ard

and the challenge of teaching as much as problem solving When students who

have done little more than memorize and imitate in their prey ious years of school

mathematics. begin to think about mathematical problems. the satisfaction for

teachers is enormous. While the research outlined in this chapter says clearly that

such rewards are w Rhin the reach of secondary school teachers, it also leaves no

doubt about the scope of the accompanying challenge. Teachers who want to im-

prose their students' thinking about mathematical problems must employ an ap-

proach to piobkm sole ing instruction that is highly structured yet open-ended It

must be structured to proe ide regular teaching of problem-solving tuol-skills and
heuristics, the consistent modelling by the teachers of the behaviors and attitudes

associated with good problem solvine. and a ready access to a variety of non-rou-
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rile problems. At the same time, thc teachers and their classroom environment

must be open to students' beconmig more aware of their own thinking and open

to then experimenting w ith that thinking in the context of mathematical problem

sol tug
In such a classroom environment, problem solv mg is valued as a procm as

v.ell as ,1 means to arrive at answers, and teachers should include problem-solv-

ing process with probIem-solv mg acluevement in their student evaluation To help

in this endeavor. researchers afe beginning to experiment w ith paper-pencil in-

struments for describing and evaluating the processes used by students in solving

problems. In a report of his recent study. , Schoenfeld includes several such in-

struments and interested teachers can perhaps draw some guidance from them (29)

(he area 01 developing ways to ev aluate problem-solv ing processes is an exciting

one and, in light of the research of Brandau and Dossey vs hich shows that dif-

terent problems elicit the use of different thought processes and different heuris-

tics (5), the area is also a challenging one.
Further research should increase the excitement about problem solving For

example. researchers will build on the work of Silver (30.31), Schoenfeld (28,29)

and others to clarify how prev iously -solved problems affect a problem solver's

approach to related and unrelated problems. Novel instructional teclmiques, such

as Whinibey', pair-problem solving, will be looked at more closely

Finally, as we mos C v, elI into the nineteen-eighties and both calculators and

microcomputers become readily available in schools. technology will probably

play a greater role in problem-solving research and instruction The research studies

ot Bell ei al, and Schoen el al.. cited in this chapter, speak well for the role of

calculators. As for microcomputers, some educatoi, envision student-computer-

teacher dialogues in which the students can experiment with new problem-solv-

ing strategies, while the computer stands ready to provide hints and to remind the

students ol the strategy options which are available, and the teacher helps the stu-

dents to integrate the newly -practiced strategies into their broader experience of

mathematics. (11)
As with all of the unfinished business of problem-solving researchers, we will

have to wait to see how realistic this vision is. In, the meantime, it is a refreshing

vision to hold onto, as are all the visions this chapter may evoke of students thinking

more deeply about mathematical problems because of their experience with

mathematics in the classroom.
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.1 know estimation is important, but exceptfor rounding, I don't

know what to do. Is there specific instruction it: c.stitnation that

should he done?

Estimation has held-a rather strange plaLe in the curriculum Although it has

appeared on numerous lists of important skills, neither textbooks nor training

programs have shown teachers how to teach it. what to stress, or even why esti-

mation is,so important. I.`urthermore. because it is difficult to capture all of the

thought processes of a ,person who is estimating the answer to a matheniatical

question. there has beeit relatively little research done on the topic Lately. how-

ever. using research methods that make thought processes more accessible. sev-

eral studies have appeared which scrutinize estimators' thinking 'fheir results have

implications for instruction.

The Importance of Estimation

Why should estunating with a sens, of reasonableness be considered a pre-

requisite kw success in secondary school mathematics? One answer is that esti-

mation is a close cousin of problem solvirv. and problem solving is at the core

of secondary school mathematics. In fact. Infton suggests that estimation and

mental arithmetic (mental arithmetic is exact coroputanon done without pencil and

paper) probably help students to develop problem-solving skills because they

provide practice in making mathematical decisions (10) ("Flow far off would I

be it 1 rounded those two numbers to the nearest tens':": "Does this estimate take

me above or keep me below the exact answer?") Paull's research study revealed

a correlation between the ability to estimate answers to numerical computation

and the ability to solve problems by trial and error, (5) Trial and error is a very

basic yet important problem-solving strategy because teachers can use it to help

students build more powerful and more efficient strategies, The presence in the

classroom ot estimaton as well as trial-and-error procedures is a sign of a math-

ematically healthy environment and there should be frequent opportunities for

both.Many students fail to connect their classroom mathematical experiences with

mathematical experiences outside the classroom. Reys and his colleagues inter-

viewed good estimators and found that most of them thought of estimation as a

skill learned and practiced outside the classroom: mathematics classes, io their

view, always demand exact answers. (6)
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11. as many educators suspect. a reliance on paper-and-pencil solutions breeds

thoughtless, automatic, and otten mistaken unnputation on the part of students,

it would seeni hkely that a regular stress on estimation and mental arithmetic could

help students to break away trom such thoughtlessness While all the benefits of

teaching estimation and mental arithmetic are not ) et known, the available evi-

dence does point to an influencing ot students assay front thoughtlessness In his

review IA the reles ant reseal ch. Zepp points to the improved mathematics
achievement among 6th, 7th, and 8th graders that resulted front training pro-

grams in mental arithinetic, ( I)
Buchanan points to four potential benefits that he sees in estimation instruc-

tion. first. it can produce 41 sec,e of reasonableness about computation: second.

it can result in students basing a greater appreciation for number size and the

structure ot the number system, third, since calculator uses can never be sure when

they will hit the ss rung key s, or if a particular calculator is totally trustworthy. es-

timating can complement the use of calculators; finally, as we've noted above, it

can facilitate the learning of problem-solving skills, (3)

Profile of Good Estimators

Just as profiles ol good problem solsers are emerging from recent research

studies, a profile oi good estimators has begun to take shape front the study by

Rey s and his colleagues. The research team selected a group of recognized good

estimators (adults, as well as students front grades 7 through 12). observed them

as they worked through seseral sets of estimation exercises. and then interviewed

them to determine their thinking processes. their strategies, their attitudes, and

other characteristics that set them apart from less successMI numerical esti-

mators. (Of The study helps to clarify the nature of good estimating and has im-

portant implications for preparing students for secondary school mathematics

First ot all, the researchers isolated three key estimation processes front their

observations and interviews:
1, Tranalanon. By this process the estimator changes s mathematical struc-

ture or the equation into a more manageable form. bus, an unwieldy ad-

dition problem might be more readily estimated ss ith a different structure

imposed, say multiplication
87,419
92.765
90,045 is estimated as 90.000 x 5 = 450,000
81 ,974

4-98,102

2. Reformuhawn. Whereas the mathematical structure is changed through

translation, reformulation changes the numerical data into a more men-,

tally manageable form, and the structure is left alone. For example, an es-

timator nught attack the five-number sum above by adding together the first

digits of the five numbers (8 + 9 + 9 + 8 + 9 = 43), and concluding

8:5
86



Est ananon

that a teasonable estimate vvould be a tnt inure than 430.000. say 430.000

or 450.000
Compenualtm This Is the proLess ot making idjustments to compensate
tor the inak.i.uraLies aLtsued through translation or reformulation The last

step in the preAloos example adding I or 2 to 43 is an example of com-
pensation As another example. a good estinlator i night estimate the fol-
lowing suni with some Lompensating before the end of the problem

73.655
86.421 "Round all of the numb;rs to 100.000 except the top one.
9 .943 Drop this one to make up for rounding the others This leaves
96.509 the estimated answer somew here hem een 500.000 and
93.42 I 600.000

106.409_
One strategy Lonsistently used by the estimators in this study is the so-called

fiont-end strategy... In one of its %ariations it appears in the example of refor-
mulation abuse. It.x.us only on the first digits. operate on those digits. then do what
Lompensation seems neLessary to make the final estimate reasonable Many of
the people in the study w ho used th:. front-end strategy both regularly and well
could not ruall having been taugnt the strategy in school.

Another strateg w hiLh the study identified and which teachers should note
.,IS the use ot Lompatible numbers. or what some students referred to as "nice
numbers This is partiLularly appropriate in estimations im ol Mg long di%ision.
traLtions. and deLimals. For Lxample. faLed with estimating the answer to a problem

like 281:737. many students would change it to 30)6000 and so estimate the an-

swer as 200. In another example, students in the study were asked.

The Fhompson's dinner bill totaled S28 75 Mr. Thompwn %%am% to lease a
up of about 15g About hos% much Omuld he leave for the up?'

Among the students in grades 7-10 who comerted the problem to a fraction ap-
pmximation. those who changed 15q to !- were inclined to change S28.75 to the

compatible S28 00. and therefore estimate the answer as ''- x S28.00 = S4 00.
while those who L hanged 15(4- to ' 6 %%ere inLlined to change 528 75 to the com-

patible S30.(X). and so gRe the still acceptable estimate of !, x $30,(X) --- 55 (X).

1 hese students have learned that the) do not aiva)s have to aim for one right an-

svver and that a ariety ot strategies will allow them to stay within an acceptable

range of answers.
Students learn rounding as a meLhanical skill As is often the case with skills

learned mek.hankall). meLlianii.al rounding doesn't aka) s serve students tv ell in

real estimating situations. A muLh richer and more flexible form of rounding is

the use of Lompatible numbers noted by Rey s and his colleagues Buchanan also

argues against nieLhank al rounding. preferring rounding skills to be an exten-

sion ot the conLepts "btween" and "ckser". as in "346 is between 300 and

but it is closer to 300. so I can round it to 300." (3)
An important objective for teaLhers as they offer their students instruction and
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pract Ile in estimation is kit the students come to alue estimates in their own right.

as distinct troin exact ,mswers. When students are asked to estimate a product like

28 ,c 49, they otten multiply, find the exact answer 1372. and then round the an-

er to 14ot) Such an approach reduces estimation to a role inferior to exact

computation and teachers should take pains that students not develop this

impression of estimation.
Reys and his colleagues were able to isolate some other characteristics of good

estimators from their study. In general, good estimators are quick and accurate with

paper-pencil computation and they use a variety of strategies to estimate In fact.

they trequently consider several different strategies before deciding on a partic-

ular one, this calculated is es.,ential to estimating wet and, indeed, to

doing all mathematics well. and it should be part of every student's instruction

Good estimators judgment and sense of reasonableness not only apply to their

estimated answers, but also to the process, of estimation itself They are able to

judge when an exact answer is needed and when estimated answers are sufficient

or appropriate finally. their clear sense that there are many situations in which

it is all right not to strain tor an exact answer leaves them less afraid to be wrong

than their peers who are not as successful at estimating.

As noted in the Researc h Within Reach chapters on problem solving. prob-

lem solving research has made, and continues to mak,!. a strOng case for releas-

ing students I row the burden of thinking that mathematics is a rigid system which

leaves little room for an indiv Owl's own ideas and strategies The same is true

for estimation. Teachers must work to convince secondary-level students that there

is room for them as individual thinkers In the mathematics classroom, that the in-

di vidual stamps they put on their estimating ss ill be prized at the highest level of

classroom achievement. A good source of activities to help teachers in this effort

is the hook by Reys and Reys (7)
As in problem soh mg. however. students require regular practice Since es-

timating is foreign to inam students, teachers should start by offering frequent

opportunities for them to choose esti;nates from among several options, then dis-

cuss the most appropriate choice xv:th the students, the factors that make it the most

appropriate choice, and so on. ( 10) The front-end and compatible-number strat-

egies noted b.), Keys et al. are examples of strategies that students need exposure

to and instruction in.
Another such strategy has emerged from the study by Sieizel and his col-

leagues. through inters mew s and observations of individuals at all school levels.

as well as adults. the:, attempted to define a flow-chart model of the process used

to approach the,kinds of estimation problems that begin in the physical world and

end with a rough numerical solution. For example. "About how many names arc

there on this page of the phone book?" The researchers found that more than half

of the estimators--ol all agesused perceptually-based strategies ("It looks like

there are a lot of words, probably 300, on the page, "), when a more reliable

"decompositon strategy was appropriate ("There are probably 100 names in a
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row and theie arc 5 toss s on the page, so I'd say there are about 500 names on
the page."). The researchers conclu led that many individuals are not aware of
such strategies tor decomposing an estimate into a grouping of more manageable-
subsstanates. and so could benefit frompstruction and practice in them (9)

Calculators and microcomputers ot kr the promise of help for teachers in pro-

% iding estimanon instruction and practice In a recent British study . MI and his
,colleagues were able to use calculators first to identify then to remediate. sonie
common mathematical difficulties of students between the ages of 12 and 16 ( )

Among the most prominent of the identified difficulties was a lack oi undecstand
ing ot place salue in decimal numbers, for example. the researchers' inters iew s
produced comments like ". . . 0.8 . . that's about an eighth" and "1 07 lbs.
is 1 lb. 7 ounces." A companion difficulty of this ignorance of place alue was

an inabihty twestimate with a sense of reasonableness.
During the teaching phase of their study the researchers were able to produce

significant impiosement in the students' understanding of place value by insult,
mg them in calculator exercises like the game called Getting Closer, played in pairs.
in which one student chooses a loss number, the other a high number, and eadi
puts his or her number on a cakulator screen. The students then take turns, with
the first repeatedly adding an> non t hole number to the lower starting number
while tho second student subtracts smillarly from the higher starting number Thus.
the numbcis on the two cakulator screens approach each other, The first player
to pass the other player's number is the loser. The players learn quickly that a
knowledge ot place solue and skills in e.stimating are important advantages %%hen

the two numbers are close to each other.
Les in has pointed out that mdisiduals differ according to their mental images

of numbers, and that the microcomputer can help them to use those images in es-
timatingfor exampk. in combining lengths of segments of the number line to
estimate sums ot numbers. Ile discusses seseral computer programs that hase been
des eloped to sharpen estimating skills using as an example, one in w hich stu-
dents estimate numbers by shooting a ''harpoon" at the number line or Cartesian
plane. (4)

Conclusion

That estimating skills ought to be taught and practiced on a regular basis is an
undeniable conclusion of all the research resiewed in this chapter Seseral stud-
ies base shown that successful estimation instruction need not consume much time

in the c;assroom. For example. Schoen and his colleagues worked with students

in grades 4 through 6 and showed that "estimation in whole number computation

can be taught.in a short period of time." (8, p. 176)
In their estimation study , Bestgen and her colleagues worked with prospec-

tise elementary school teachers, gis mg one group weekly training and practice in

estimating strategies. while another group receised just weekly practice. and a third

group received no training or practice in estimation as all (2) The first group-
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the training and practice gioup- emerged froni the ten-week study with a greater

understanding ot and respect tor estimation than the other two Yet this was a

program that lasted a mere ten weeks. lf secondary-level teachers w ill commit

themselves to regular classroom practice and reinforcement of estimating skills,

the ellects on students as they advance through secondary-level mathematics will

be astounding.
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How can hand-held calculators be used to enhance the learning of

secondary level mathematics?

Because ot the comeluence and motivation it pros ides and because of the lat-

itude it affords teachers n skill and concept development , the handheld calcu-

lator has mov ed ilgo the front ranks as an aid in the teaching and learning of

secondary school mathematics. The attitude of most mathematics teachers to-

ward classroom calculators has changed rapidly from caution to enthusiasm In

tact, a strong Lase Lan be made from research evidence that the calculator should

be an integral part of the teaLhing and learning of secondary school mathematics

That evidence is the subject of this chapter.
the issue ot the calculator's potential harm tostudents' learning has never been

as prat among secondary school teachers as it has been among elementary school

teachers. Even so. it is important to clear the air of any doubts, and to note that

research has firmly established the acceptability of hand-held calculators at all

school levels--elementary and secondary. Roberts looked at thirteen studies of the

et tects ot calculator use in the secondary school mathematics classroom (21) Eight

ot those studies measured effects on concept attainment, nine measured effects

on attitude, and elev en measured effects on computational skills None of the

studies favored non-use of calculators for any' of the three categories, One study

tavored calculators for concept attainment, two for attitudes, and six for com-

putational achievement. In the other studies, no significant differences showed

up between calculator use and non-use.

Roberts remarked in his review that the attitude studies tended to be too short

in time to gauge any significant attitude changes, and he asserted that "the learn-

ing settings in which these studies vvere conducted did not generally emphasize

concept-formanon skills." (21, p. 84) Thus, he pointed out, educators will not

know the tme power of calculators in the changing of attitudes about mathemat-

ics and in the learning and teaching of mathematical concept% until there are stud-

ies that take advantage of the unique capabilities of calculators and studies that

measure calculator effects over longer periods of time.

Robert's observations raise two questions:
What is thc extent ,of calculator use and thc commitment to calculator use

in our secondary schools?
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What are the unique instructional capabilities offered by calculators')

Me statistics available 'reflect a continually grow mg role for the calculator in

the classroom. In 1980, lie), s surveyed teachers in MissoUri and found that just

oser (A) percent of senior high mathematics teachers had used calculators in the

classroom. t17). Kasten's surey of teachers in four states showed that the per-

centage of secondary teachers and principals in those states Mt* believe that cal-

culators should be included as a topic on high school competency tests ranged from

just over 40 percent to 66 percent. (13)
Another survey underscored the need to identify and exploit the unique pe-

dagogical capabilities of calculators. Wyatt interviewed teachers who had never

used calculators in the classroom and found tha they seemed primarily aware of

two uses, computation and checking. (32) Clearly, while the majority of second2

ary teachers favor a role for calculators in the classroom, there are still many

teachers who are unaware of the wide benefits of calculator use or of how cal-

culators nught be integrated into their teaching.

Benefits of Use of Calculators .

As they unMd from research and from teacher experimentation in the class-

room, these benefits seem to fall into three categories and we will discuss each

in turn:
Calculators provide a powerful tdol for evaluating the depth of students'

understanding of Mathematics and for diagnosing mathematical miscon-

ceptions and difficulties.
CalcuLitors permit teachers to adopt more freely and comfortably sonic of
the classroom behaviors that research has associated with the effective

teaching of mathematics.
Calculators facilitate the teaching and learning of several concepts and skills

which haNe traditionally been stumbling blocks in secondary school math-

ematics.
Diagrwsts and Evaluatwn. In ways often incidental to their primary objec-

tives, seseral research studies have shown that the calculator can be used as a lens

by researchers and teachers to assess students' understanding and to pinpoint areas

of weakness. The topic of di% ision pro, ides a good example The recent National

Assessment of Educational Progress (NAEP) posed an exercise similar to the fol-

lowing one to groups of 13- and 17-year-olds who were allowed to use calculators

and to groups of 13- and 17-year-olds who worked the exercise by paper and pen-

cil:
.04 ATT.

Among.the 13-year-olds who used calculators on this exercise, nearly 30 percent

reversed the divisor and dividend, while just over 10 percent of the 17-year-olds

did the same. (5) Similarly, an extensive study of British adolescents' under-

standing of various mathematical coricepts reported that under 10 percent of the

15-year-olds tested were "consistently able to press the buttons oR their calcula-
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tor in the correct order in solving simple division problems. (8. p 47)
No doubt, some of these errors Lan be ascribed to a lack of familiarity with

symbols, perhaps with the working procedures of the calculators Mainly, how-

ever, the results refleo a bask, lack of understanding among many teenagers of

the concept of division.
Hart urges teaLhers to apitahze on incorsect calculator answeis and to probe

students' conceptual understanding and mathematical sense of reasonableness (8)

For example, w hen a student w or6 5 100 on the calculator, ask her what she

expects the answer to be. Quite often, 20 is the expected answer, so when 05
shows up instead, ask for an opjmon as to what might have happened. In other

words, use the Lakulator as a catalyst for mathematical dialogues with vudents

The NAEP testers also asked students to order a,set of fractions according to

size:
io, 1/4, 1/4, 2/1,

fhe sucLess rate was very low ameng both 13- and 17-year olds, whether they used

calculators or not (2 percent success for both groups of 13-year-olds; just `over 10

percent tor both groups of 17-year-olds). (5) If the students generally understood

how to convert fractions to decimals. the calculator groups should have scored

higher on this exercise, since the calculator makes such non-routine computation

much less risky. The scores were uniformly low, however, so we have strong evi-

dence that many teenagers do not know how to convert correctly fractions to dee-

inials.
In the area of problem solving, the NAEP researchers were able, with the help

of calculators, to identify and call attention to a crisis that pervades the entire

mathematics curriculum, even when computation is removed as an obstacle, most

teenagers cannot think sensibly about mathematics word problems In particular,

the researchers compared the performances of calculator users and non-users on

several problems like the following:

A man has 1310 baseballs to pack into boxes which hold 24 baseballs each

How many baseballs will be left over after the man has filled as many boxes

as he can?

Because calculators record division remainders in decimal form, calculator users

were obliged to translate the machine's answer for 1310 24 = '? into a whole-

numbered remainder. With or without calculators, few students solved this prob-

lem correctly, but calculator users fared especially badly: 29 percent of 13-year-

old non-users were successful, as opposed to only 6 percent of the 13-year-old

calculator users. Among 17-year-olds, only 19 percent of the users were able to

obtain the correct answer (5).

Zepp considered a similar issue. the role of computational skills in propor-

tional thinking. (33) In particular, his research sought to identify how much com-

putational difficulties contribute to the difficulties many students have in answering

questions like the following:
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13111 nutde Ienwnade it ah 12 Icnions and 9 teas/win, y'skyar Sand starts
with 20 lenwns, Noss Incin tcaspoons of siyar should she use w that her lent

(made tastes the same as Bin?

Lepp worked w ith groups ot 9th graders and college freshman and 'divided them

into a calculatOr group which used cakulators on all practice activities and On a

posttest, and a non-cakulator group which used no udifulators at all on the same

practice activ ities and posttest. Because there was no significant 4ifkrence On

posttesu achievement between the two groups. Zepp concluded that we should not

he looking to computattonal difficulties as the major obstacle to proportional

thinking.
Rey s and his colleagues used a ''broken' calculator to help them gauge the

level of good estimators' confidence in their own estimates. (18. 19) The re-
searchers secretly programmed a calculator to be w rong by vary ing degrees, asked

their subjects to make some computational estimates and to check their estimates

against the ak ulator's computations. During individual interviews, each subject

was given a set of estimation exercises and, as they checked vitltthe calculator.

the error range of the cakulator was allowed to increase progressively from an-

swers about 10 percent greater than a reasonable estimated upper bound, t6 25

percent. then to 50 pet-Lent. Lven though almost 90 percent of their estimates were

within an acceptable range, 36 percent of the subjects went all the way through

the experiment w ithout concluding that the calculator results'were unreasonable

Instead. they chose to indict their own estimates. The lesson of the experiment is

clear and, as our culture becomes more tied to technological devices, it is all the

more pressing, we need an increase at all levels of the curriculum in activities that

develop estimating skills and in classroom dialogues that develop confidence in

the use of those skills.
Here is an example. taken from (7), of a calculator exercise that encourages

estimating. Similar exercises can be found in (4). (15) and (16):

Starting with 15. how many successive multipliciiions will it take to get an

answer in the interval (10,000, 10.500)'?

One way of getting there in 4 steps is:

I. IS x 600 = 9.000
2. 9,000 x 1.1 = 9.900 .

3, 9.900 x I 10,890

4. 10.890 x .95 = 10,345.5

While the Reys silk!) used the calculator to show that even good estimators

lack confidence in then own estimates skills, Blume used the calculator to view

the solution process of students when they tackle problems with and without the

Ind of the machines (2). For example. there arc at least two ways to set up the

solution of the following problem:
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The star basketball player .$«)red a total of 297 points during the first nine

games, Jill averawd 14 points fewer NI ganit than the star How many points

did Jill %core during the firselliiw gimws!
it «297-- 9) 141 x 9 '

. 13 297 (14 x 9) ?

Method A first determineS the lier-game average of the star, subtracts Jill's av-

erage. then multiplies by 9 to obtain Jill's total. Method 13 shortcuts this process

by multiplying the dif ference between the star's and Jill's per-game averages and

subtracting that total difference from The star's total to, give Jilfs total,

Either method is v alid and sound, but Blume found that a group 01 seventh-

grade students tended to ignore the shortcut solutions Mit and l'avored the longer

solutions more when they used calculators than when they used only paper and

pencil. he implication for teachers is clear. allow students to use calculators to

solve mathenutical problems. but help them through discussion, to become aware

ot their own solution processes as well as the variety of solution processes avail-

able' to them.
Blume and Mitchell worked with 7th grader. and trained them in the use of

calculators with Reverse P)lish'Notation (RPN) logic, a bracket-free machine logic

used by many scientists and engineers. (3). Once the students had learned ti op-

erate the RPN calculators, they were tested on several computations. The ma,or-
.

ity showed they had mastered the new machinZ logic. In fact, 81 percent v ere

correct oQ the following example. (25.97 57.78) 13.4 = N c pa-

rentheses were missing. however, add it was up to them to decide on the hier-

arch) of operations, the students did not fare as well. Only 20 f)ercent gave the

correct answer 70.5 to the following exercise: 83.3 54.4 4.25 = N. Most

subtracted first, then divided, rather than the reverse, thus revealing how con-

Msed most students areabout the notion of operational hierarchiesthat is, which

operation mast be performed before (Alters in a computation.

Especially as they head into algebra. suidents must be comfortable with op-

erational hierarchies. Lappan (15) suggests using the calculator as a toOl for help-

ing students to acquire skill in manipulating parentheses in equationc, through

problems like:

s 1. Insert parentheses to nutke these true:

16 x 15 7 = 133' 16 x 15 7 = 247

16 x 15 7 =' 128 16 x 15 7 = 352

. .
2. insert x. 4 . and parentheses, if needed, to make thive trite:

29 15 .13 = 57
29 15 13 = 5655

29 15 13 =, 448
19 15 ' 13 = 1

"49 15 13 = 0.1487(79
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It you use such examples to help the students' transition to algebra go more

smoothly. , make sure you have them discuss the roles of the parentheses in the
exercies that allow different answers to arise each time.

In a recent British study. , Bell and his colleagues were able to use calculators

lust to identify , and then to remediate, sonie common mathematical difficulties
ot students between the ages of 12 aL 116. (I) Among the most prominent of the

identified difficulties was a lack of understanding of place yak ii decimal num-

bers, for example. the researchers' interviews produced comments like " 0 8

. . that's about an eighth" and "1.07 lbs. is 1 lb. 7 ounces."
During the teaching phase of their study the researchers were able to produce

siguiticant unpftnement in the students' understanding of place value by involv-

ing them in calculator exercises like the game called Getting Closer, rlayed in pairs,

in which one student chooses a low number, the other a high number, and each

puts his or.her. number on a calculator screen. The students then take turns, with

the hrst repeatedly adding any non-u hole,number to the lower starting number
while the second student subtracts similarly from the higher starting number Thus,
the numbers on the two calculator screens approach each other. The first player
to pass the other player's number is the loser. The, players learn quickly that a
knowledge of place value is an Important advantage w hen the two numbers are

close to each other.
Effeane Tecklung lklun wrs. Recent reseamh has made it more possible tharr

ever to describe effective mathemancs teaching, by identifying those classroom

behav iors that Contribute to effectiveness. That description is dealt with in depth

in the chapter, effective Mathematics Teaching." There is a specific connec-

tion intween effectiveness research and calculator research, however, Calcula-_,

tors can facilitate the learning and use of effective teaching behaviors, and it is

that corneetion'we describe in this section,
Rese,trh shows that effective teachers spend more time than less effective

teachers cn w hok-c lass lecture, discussion, and demonstration. When Reys and

his collealues interv Inked teachers 1kho had begun to use calculators in the class-

room, ,he teachers reported that they were able to cover more topics with the aid

of calculators and that they dealt more with concept development and less with

computation during their mathematics classes. (17) As they become more adept

with calculators in the classroom, teachers can apparently use them to create en-

vironments which ins ite more lecture, discussion, and demonstration, Another
trademark of effective teaching which is related to allocation of time is the amount
of tu»e teachers keep their students engaged in learning tasks. In this vein, Sze-

tela noted at the end of a study involving the use of calculators to teach ratio to

scvemh-graders that, in the study's posttest, "students using calculators ap-
peared more motivated, were more industrious, and spent less time idling (28,

p, 70) It is likely that classroom teachers could create the same effects when they

use handheld calculators.
Another characteristic of effective teaching that has emerged from research is
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question-askingthe number and quality of questions asked by the teacher and the

.number of opportunities made available to students for their own questions The

calculator is a natural inducer of curiosity and of inclinations to experiment and

to ask questions. Shirey's stady illustrated this inducement to experiment among

calculator users in grades 10 through 12. (22) limas a brief study, comparing one

group learning a unit on home mortgages via computer-augmented instruction with

a group learning the unit with the aid of handheld calculators. Shirey noted that

"more calculator scudents performed some experimentation beyond the mini-

mum when compared to the computer group." Piaget has urged the development

of environments around young children that are filled with objects to pique their

curiosity. In the secondary classroom, calculators can apparently serve a similar

function for older students.
By allowing students to manipulate numbers and to observe number patterns

without the tedium that often accompanies paper-pencil computation, calculators

make it possible for students to turn their questions into conjectures and their

conjectures into mathematical argument and proof. If such a process becomes a

regular part of classroom activity, it leads studeths to construct a view of number

and mathematics- in the same way that, according to Piaget, they develop their

world-view: by interacting and experimenting with the objects around them. The

primary role of the teachei in this process is to help them to formulate their ques-

tions and conjectures and, of course, to make sure they have frequent opportun-

ities to use the calculators in this way.
Krist illustrates the use of calculators to engage students in a dialogue leading

to conjecture with the following example. (14) First, the teacher notes that 62

6 = 5' + 5 and asks the students to look for a pattern that might extend this

equation into a conjecture. Do other numbers fit into the same sort of equation?

How could you check it for other numbers? What shon-cut expression might state

the conjecture that the pattern exists for all whole numbers? (e.g., N2 N = (N

1)2 (N 1)),If the class is versed at all in algebra, the next question might

be: How could you show that this is true for all whole numbers N?

The ability to communicate the continuity of mathematics from topic to topic

is another characteristic of effective mathematics teachers. (See the chapter "Ef-

fective Mathematics Teaching.") Hiatt points out that one aspect of that conti-

nuitythe mathematical method of inquiryis communicated clearly and

consistently when calculators are used well (9). As Hiatt describes it, the method

of inquiry has five steps, each of which can be scan in the Krist example above:

I. making observations;
2. orgali:ling observations into patterns, conjectures;

3. specializing and generalizing through inductive or analogous reasoning;

4. inventing symbolism for the generalized conjecture;

5. proving the conjectures.

Concept and Skill Development. In his overview of calculator research and

9
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development in mathemat Its eduLation, Weaver points out that the true power of
the Lalculator is that it Lan transform iand in some Llassrooms h(zs transformed)
,the iirocess of learnmg mathematics. (30) Traditionally, hoW teachers develop
inathernauLal ideas, appliLations, and probkm-sohing skills in their students has
been intervi, oN enoften tangled with their development of student proficiency
iii paper-penLil Lomputational algorithms. Weav er writes that, although the two
development processes should work in parallel and not in conflict, parallel de-
N elopment has never been the rule in secondary mathematics claSsrooms, Now
the wIculator offers an opportunity to make the two processes truly parallel and
to keep them that way . The message to teachers, teach paper-pencil computa-
tional algorolmis, but also take advantage of the handheld calculator as a means
for dev eloping mathematical ideas, applications, and problem-solving skills

If the picture Weaver paints is accurate, then we might expect to see some clear
egv idence of the effects of instructional calculator use on concept and skill devel-
opmee. Unfortunately, calculator research is young and so has produced a rel-
atively modest, though extremely promising, set of results. Once researchers have
more time for exploration, how eN er, it is possible that the powerof the calculator
will be kit throughout the mathematics currkulum. In fact Jewell analyzed a set
of typical seLondary school textbooks and concluded that approximately one-half
of the content of algebra, geometry, , and elementary functions texts and one-eighth
of an algebra-trigonometry text could be appropriate for calculator applications
that contribute to mathematical understanding. ( I)

In their search for specific topics that are especially ripe tor calculator use,
researchers have looked for concepts whose learning is often impeded by the
computational diffkulues unolved. Ratio is one of those concepts. Szetela de-
signed a so enth-grade study with the hypothesis that the measurement situations
that quite often, form the basis of ratio instruction can be swept clean of distract-
ing calculations if calculators are used. (28)

The study involved eleven days of ratio instruction for calculator and non-
calculator groups. Included in the instruction were measurement of circles to de-
termine the ratio of diameter to circumference, measurement of poles and tlieir
shadows, measurement of automobile width and length, coin tosses, and so on
In the testing administered after the instruction was completed, the calc6lator group
did better, though not sigmficantly better, on two achievement tests and one at-
titude test, The calculator group did significantly better than the non-calculator
esoup on a test on unfamiliar ratio problems, during which the calculator group

was allowed to use calculators.
Moving to a later.point in the curriculum, Szetela also studied ninth and tenth

graders using calculators to karn trigonometric ratios. (27) At the heart of this study

was some intea i imaruction over a three-week period that centered on the de-
velopment of abbreN tilted trigonometry tables through measurement activities with
right triangles. One group of students worked through the table development with
the aid of calculators, another group worked without calculators. There was no
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significant difference between the two groups on ap achievement test adminis-

- tered after the instruction was over. Of special interest to teachers, however, may

be the testimony of the teachers involved in the study that "teaching with cal-

culators was much less onerous than teaching without caldulators." (27, p. 118)

Wheatley conducted a problem solving study with calculators at the sixth-grade

level which clearly invites similar investigations by secondary school educators,

(31) In the study, two groups ofstudents received the same training in the use of

problem-solving strategies such as estimating, retracing steps, and cheeking the

reasonableness of answers. One group used calculators in the training and the other

did not. In a final problem-solving test, the calculator group used significantly more

of these strategies than did the members of the noncalculator group.

'One area of the curriculum where calculator researchers have been fairly ac-

tive is ninth-grade general mathematics.
Toole conducted.one of the longer stud-

ies in this area, a 6-month study in which she compared a calculator-assisted

program used one day a week with non-use of calculators in the same course. (29)

In the six.,months between pretests and posttests, the calculator group gained eight

montl,ts more on the total test than the non-calculator group. The breakdown into

subtest gains wa.s. as follows: 7-month gain in computation, 5-month gain in con-

cepts. I-year gain in applications.
Creswell and Vaughn also conducted a calculator study among ninth-grade

general mathematics students, based on eight weeks of instruction in decimals and

percents. (6) Two groups of students were compared; calculator users and non-

users. The non-users were taught from the standard textbook; the users received

instruction based on materials designed b)7 the researchers fo& the reinftrcement

of the concepts involved in decimals and percents. On the posttest that measured

the level of achievement over the eight weeks, the calculator group scored sit-

nificantly higher than 'ate non-users.
Remarking on this difference, and noting the frequency of studies where no

significant difference arose when the calculator was used merely to supplement

the textbook for checking and calculation, Creswell and Vaughn ascribe the

achievement difference between users and non-users in their study to the mate-

. dais they developed to exploit the calculator. Both Roberts and, Suydatn have also

taken note of the dearth of research studies and of curriculum materials that ex-

ploit the unique capabilities of the calculator (21 , 26). Instead', we see curriculum

materials that suggest only supplementary use. One major exception to this is a

carefully developed eleventh- and twelfth-grade mathematics curriculum built ,

around the programniable calculator by Rising and his colleagues. (20) Another

exception is the ninth-grade course, based on concepts from statistics and on the

use of the programmable calculator, which was developed by Hoffman and her

colleagues (10). Without the proliferation of such materials, we may never sec

the real pedagogical potential of the calculator fulfilled.

We also may not gct a true reading of the usefulness of calculators if they are

not welcomed into test-taking. A majority of secondary teachers are apparently
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-ead to take this step. In their survey, Res and his colleagues found that 67 per-
cent of senior high school students and 52 percent of junior high school teachers

ould support the use of calculators on standardized tes's measuring concepts or
apphcations. (17)

Conclusinn

The calculator has been cast into a peculiar situation. On the one hand, it has
beCome a fixture amoag American teenagers the NAEP data shows that 80 per-
cent of thirteen-year-olds and 85 percent of seventeen-year-olds either own then'
own calculators or have one available for use. (5) On the other hand, financial
exigencies may keep the machine relatively inv isible in the secondary school
classroom. In particular, tf calculators have to compete with microcomputers for
funding. the curriculum materials needed to integrate the calculator into the cur-
riculum (as opposed to tts usual supplementary role) may never be developed.
Furthermore, calculator training for teachers may be put aside for lack of fund-
ing. and the need there is critical. Reys found that a large percentage of the
teachers tney surveyed said they wanted training in the use of calculators, but had
nover had any 71 percent of junior high school teachers and 63 percent of senior
high school teachers wanted training, while only 13 percent and 17 percent, re-

, speetively, had already had some training. (17)
That the calculator should be an integral part of the curriculum has been es-

taphshed. but there are still many pieces njissing from the calculator picture. How
and at w hat specific points should it be integrated into the curriculum? Over the
long term, how well can it facilitate students' use of pioblem-solving processes
and strategies How can teacher training be designed so that calculator use will
make it easter for teachers to behave reffectiv9ly in the classroom? These are
questions that touch on the most important issuesjn mathematks instruction. They
must not be ignored.
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I teach mathematics in both the eighth and ninth grades, and I see

a mysterious change M students' petformance from the one grade

to the next. Many students whd seem to compute fairly well with

fractions in the eighth grade appear to run into trouble when they

face fractions in the context of algebraic equations in the ninth

grade. Is there something in the change of context that throws the

students off?

Secondary school mathematics must seem like a foreign language to students

who are not fully prepared for it. Like the students described in the question above,

they often founder even in areas where some of their skills seem secure To many

teachers this foundering is a signal,for educators to re-examine the teaching of

prerequisites for high school mathematics.
Among:the prerequisites singled out for scrtitoiv b. the teachers whose ques-

tions form the basis of Research Within Reach: ,Secondary School Mathematics,

understanding fractOns was one of the two most frequently mentioned. The other,

estimating with a sense of reasonableness, is covered in a separate chapter

A Difficult Concept

In describing the several important threshholds in the learning of aithernat-

ics,.Sieffe has underscored how very real and very critical is the dilemma faced

\by both the teacher who asked the question at the beginning of this report and by

the students alluded to in the question: "There are (lit least) thret- critical

achievements in a child's mathematical lifethe idea of ten as a unit, the idea of

a fiaction, and the idea of an unknown." (18, p. 20) Faced as they are with the

double (*mina of stepping into the arena ofalgebraic unknownsthe third crit-

ical aehieVementwithout the aid of the second critical achievementan un-

derstanding of fractions-:--it is no wonder that many students' seeming mastery of

fractions begins to fallvart.
Flow can it happen that go many eighth graders can-seem to master fractions,

only to stumble over them in the ninth grade? On one level, the answer is simple:

there is much more to mastering fractions than mastering computation. On a deeper

level, there are several subtle aspects of fractions which slip by many students as

they prepare for secondary level mathematics. Some research in the past decade

has helped to delineate those subtle aspects.
Payne's review of fraction research provides an overview of the process of

learning fractions that reflects how long and winding the process is, and the va-

riety of contexts in which fractions are encountered in the elementary school cur-

riculum. (15) The early days of learning fractions are not so difficult. Payne cites

)
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evidence that most students from the age of eight on can master the initial frac-

tion concepts and symbols in a two-week period, and that they tend to be quite

enthusiastic about fractions during this initial learning period. Yet, tater on, as they

confront such concepts as eqtnvalent fractions, even proven instructional strate-

gies like paper-folding and using different-sized rods cannot offset the trouble most

children have with those concepts. Some pictorial representations of fractions

in particular. on the number lineseem especially difficult for students in the in-

termediate grades. (15)
The recent National Assessment of Educational Progress (NAEP) illustrates

sOme of the weaknesses in understanding that underlie many secondary students'

experiences with fractions. In several exercises NAEP tested students' skills in

estimating computations with fractions. The results indicated not only a general

weakness in students' understanding of fractions, but also revealed that many

students resort to memoryand often mis-remembered reh's to compute frac-

tions instead of estimating. Thus, when asked to estimate the answer to 12/1;

(the test did not allow enough time to figure this out with pencil and paper),
fewer than 25 percent of the 13-year-olds and fewer than 40 percent of the 17-

year-olds chose the tweet estimate of 2. Many of those who were mistaken at-

tempted to compute the answer without a check for reasonableness in their an-

swersin fact, 19 and 21 were common ansWers. (1)
In their summary of the status of sezondary students' understanding of frac-

tions and their skills in computing with fractions, the researchers who summa-

rized the NAEP results made the following statement: "Overall, it appears that

roughly two-thirds of the 13-year-olds and about three-fourths of thc 17-year-olds

have learned most 'of the very elementary fraction skills. However, only about half

of this number can integrate these skills to solve some of the more involved cal-

culations with unlike denominators and mixed numerals. In other words, only about

40 percent of the 17-year-olds appear to have mastered basic fraction computa-

tion." (I, p. 331)
One craml aspect of fractions that students often do not grasp is their flexi-

ble naturethey are quantities with ra number value (V: is greater than 1/8); they

also express relationships between quamities (3/4 of 12 is 9). Kieren (8) has ana-

lyzed the various contexts in which we use rational numbers, the language and

symbols that accompany each usage. and he has summarized the four contexts in

this table (Note. a rwumal number is a number that can be expressed as the quo>

tient of two integers. All rational numbers can be expressed as fractions, but dot

all fractions are rational numbers - for example. 1r/.1):
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Context Language Symbol

measure three-fourths of a.unit Yi

quotient three divided by four 3 4

ratio three to four . 3 : 4

operator three for every four 3 for 4
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As examples of the four aspects. consider the following:

measure: '"che ann of this region is I square meter plus 1/2 square meter plus

1/4 square meter, or 144, = 13/4 square meters,'

quotient: "Sharing 3 eandy bars among 5 people int ins each person gets 3/6

of a candy Nr."

ratio: ,."A one-to-three mixture of flour and water has the same consist-

ency as a two-to-six mixture, because 1/.1, =

operaurn "11 a store shows a profit 2 out of every 3 days. then over a 30-

day period, there will be 20 days of profit, because 36 of 30

-The researchers who summarized the recent NAEP results ()tiered thdir as-

sessmeqt that most 13-year-olds sec these four aspects of fractions as separate,

unrelated topics, rather than as different contexts for the same concept. (I) The

validity of that assessment is strengthened by the research of Noelting. (14,8) Ile

found that different contexts of fractions draw qualitatively different responses

from students. In particular, he asked students a series of questions using either

the ratio context or the quotient context. Here are sample questions from (he study:

Situation I (ratio number questions)
Which of the following mixtures has a stronger orange flavor. A or.,B?

A: One orange concentrate, three water

B: Two orange concentrate, six water

Which of the following mixture,s has a stronger orange flavor, M or N?

M: Two orange, three water
N: Four Orange, six water

Situation 2 (quotient number questions)
Some cookies are shared among two groups of boys. In which group will

a boy get more cookies, A or B?
A: One cookie for three boys
El: Two cookies for six boys

In which group will a boy get more cookies, M or N?

M: Two cookies for three boys
N: Four cookies for six boys

Noelting found that students generally were able fo answer the second ratio

question if they were able to answer the first, but found,the first or the quotient

questions easier than the second, even tlrugh Situation I 'and Situation 2 are

mathematically the same. Obviously, students think differently in the quotient

context than in the ratio context.
Larson noted another facet of students' misunderstanding of 'fractionsthe

ability, to distinguish between a fraction as an expression of part of a unit and a
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fraction as a, number 1% ith a unique place on the number line. ( II) She asked the
soenth grade students in her study to [butte the point on this line segment that
can be named by the fraction 1/5.

In general, many of the students tended to us: the rule. count the number of
equnalent segments (in this case, 5) fcr the danominator and count the number
of equivalent segments from zero until you reach the number w hich w ill combine
as the numerator vdth the chosen denominator to yield the fraction (in this case.

I). This rule served them well in the above problem, but
approximately 20 pen.:ent of the students also ut.ed the algorithm to answer the
same question about the following line segment, and they chose the indicated point.

. I . 2

Thus, they chose the point repmsenting 'Ay or 'A of the whole line segent from

0 to 2, not the number 1/4.
In a similar vein, Ekenstam conducted a study among Swedish students and

noted that more than half of the 15-year-olds tested wen: erratic in then' selection
of fractions less than 1 from a list of fractions of various sizes. (2)

Lankford sat up a series of interviews of 7th graders, designed to determine
the kinds of mi; conceptions young people have about fractions. (10) In one ex-
ample, he carefully documented 22 different errors the students made in figuring
out 1/4 1/2 ? Overall, the most common errors he noted in his study were:

I. Multiplying a mixed fraction times a whole number by multip'ying the whole
numbers and tagging the fraction on the end:
3 1/4 x 5 = 15 1/4

2. Adding fracti9ns by adding numerators and adding denominators.
1/2 + 1/4

Again, it is important to try to look at the roots of such errors. As Vinner and
his colleagues point out, in order to know that 1/2 + 1/4 316, a student must know

that ?:/6 1/3, that 1/2 < 1/2 , and must understand what the addition of fractions
means. (20) These are conceptual issues and cannot be settled through algo-
rithmic training alone.

Kieren and Nelson conducted a study, based mostly on interviews of students
in grades 4 through 10, the purpose of which was to delineate the development
in young people of the notion of a fraction as an operator (for example, 1/5 of 20.
is 1Z). (9) The students were asked to observe a 4machine" into which a certain
number of papers went in and a lesser number came out, and then to describe what
rule ran the machine. Thus, they might see an input of 20, an output of 15; and
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input ot 40, and output ot 30. and so on, and conclude that the rule is V3 x . From

their antemews the researchersh)pothesized the following three levels of growth.

a. The students are 1/2-oriented. They can identify operations that are 1/2 x

but are relatively fixed on 1/2, to the extent that they are inclined to identify

other fractional operations, such as ¼ x , as 1/2 ,< ,

b. A transitional level, where the students can klent fy unit fractional opera-

torsthat is 1/2 x , 1/4 x-, 1/4. x 1/2 x and so on. and the composition of
unit operators, for example, 1/2 x 1/2, 1/2 x 1/2.

e. The students can identify all forms of fTetiontil operatOrs.

Role of Instruction

A very high percentage of the studies cited so far were based on student in-

terviews, which should be a clear signal to teachers wanting to shore up their stu-

dents' understanding of fractions. In order to learn which aspects of fractions arc

misunderstood by their students, teachers must encourage them to verbalin as

much as possible and should take advantage of the ensuing classroom dialogues

to develop a full understandiag of fractions.

Lochhead (13) gives an example of such an instructional appreuch in the con-

text of addition of fractions. Give no Freliminary explanation ot' what adding

fractions is all about. Give a simple question such as 1/2 + 1/4 = ?," which will

probably bring a correct answer. Ask the students to verbalize the rule by which

the addition was carried out and which can be applied to further addition exer-

cises in fractions. Now give another example that will test the student-oftered rule

and \i,j,hich might provide a counter-example to that nile if it was flawed, Finally.

continue the discussion, having the students revise their rule if necessary,

Hasemann's study made it clear that instructional strategies can have a tre-

mendous bearing on how well students understand fractions. (6,7) He worked with

German adolescents who were relatively unsuccessful in mathematics. He pre-

sented fraction exercises in two forms: in diagram form and in computational form

Thus, a circle was shown with three-quarters of it covered with dots, The stu-

dents were asked to shade in 116 of the dotted part and then to say the fraction of

the circle that had been shaded.

The same exercise appeared also in straight computational form:
116 x 3/4 = ?

108 I II



11.111.11111111M11111MOMIIIMiwwwwwwwwwwwwwwwww.

Fractions

Slightly more than 50 pocent of the students in the study were successful in
the %.omputational eseruse. while only 30 percent succeeded in the diagram ver-

sion.
Mist:mann contrasted his results w ith the results of a similar experiment with

British student . in a program whose emphasis was on understanding fractional
Loncepts through diagrams. The results were reversed. slightly more than 50 per-
cent of the British students succeeded in the diagram exercises, while fewer than

25 percent were successful in the computational version. Pointing out that Ger-
man schools emphasize the computational approach to fractiOnsz in contrast to the

diagram-onented British program, Hasemann concluded that instrctional em-
phasis and stress will affect many students' understanding of fractions.

Another possible factor with a bearing on instruction emerges from cognitive
processing research, that is, the research that studies how learners process infor-

mation, parcelling it out into the shelves of memory and gaining access to it when
it is needed. As a.result of his research. Greeno has offered the opinion that when
learners compare two fractions by regions or diagrams they use spatial process-

ing, but that they process the algorithm for comparing fractions--choosing a com-

mon denominator, then multiplying and dividing by the appropriate numbersin
a different way. (3, 15) In essence, says Greeno, the two ways of processing pro-

duce two different concepts of fractions.
Both Hasemann's work and Greene's work imply that students need to see both

approaches to fractionsv isual and algorithmicand that they need help in seeing
how the two relate to each other. Instruction that puts a heavy stress on compu-
tational algorithms for fractions can lead students astray. Peck and Jencks inter-
viewed sixth-graders as they worked on various fraction exercises, such as "Which
is larger, 114 or 215?" "What is 2/3 + 1/4?" and "Can you draw a sketch of
1,3 ?" (16,17) The researchers noted "Almost all the children appe-red to search
their memories for rules and then to try to apply the rules. The rules were often
misapplied, and the students could not tell that they had done so." (16, p.347)

In describing the results of the extensive British study entitled Concepts in
Secondar) Mathematus whl Science (CSMS), an assessment of the mathematical
and scientific understanding of students between the ages of 12 and 16, Hart
summed up the researchers' conclusions for the topic of ratio; "Finally, teaching
an algorithm such as alb = cid is of little value unless the child understands the

need for it and is capable of using it." (5, p.101)
The CSMS researchers found that, rather than using an algorithm that has no

meaning for them, students often approach a ratio problem by "building up". For
example. in approaching the problem "1/2-cup of cream is sufficient for 8 peo-
ple. How much is sufficient for 12 people?", they reason that 12 is 4 more than
8, 4 is half of 8, so the answer is 1/2 + 1/2(1/2) = 3/4 of a cup. The reasoning
is valid, but the researchers pointed out: "The majority of children do not pro-
gress bgyond doubling, halving and using doubles and halves to 'build up' to an-

swers. This ability is no guide to how the child would tackle a ratio of say 5:3."
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(5, p, 101)
The instructional implications of the research described so far are threefold:

I. Be alert to the multiple levels of meaning in the concept of fraction and to

the different degrees of understanding associated with each.

2. Be aware of the limitations, some emerging from cognitive development,

others from variations in spatial processing,. that cause differences in stu-

dents' understanding of fractions.
3. Do not rely totally on algorithms to teach fractions. Integrate the use of

diagrams with the use of algorithms.

One promising instructiona! approach which is faithful to all tljree has been

part of the Calgary Junior High School Mathematics Project. (4) The approach to

teaching fractions was a "process" approach, through which seventh-grade stu-

dents carried out a mathematical investigation. They experimented with concrete

materials, recording what happened in the experiments, formulating questions,

and writing up accounts of experimental results as well as applying the results to

practical situations. The study lasted eleven and a half weeks. Not only did the

experimental group's achievement improve significantly when t"y were com-

pared with a group of students learning from a regular textbook, but they also

displayed significantly greater enjoyment of fractions than did the students in the

regular group. Furthermore, there was a significant improvement in their ability

to give explanations, probably due to their experience inwriting up accounts of

experimental results.
Calculators are a valuable tool for teaching fractions. Szete la reports that sev-

enth-gradeis who were taught the concept of ratio with the aid of calculators did

better on an unfamiliar ratios test than a group who learned ratios without cal-

culators. (19) Szetela also reported that the learning experience was "less tiring

and frustrating for both teachers and students when calculators were used." (1 9,

,p. 7 0) As in all such uses of calculators, however, the machines cannot stand on

their own. Teachers must be ready to deal with issues and questions which cal-

culator use can generate. For example, many students do not understand why

119 becomes .1 111 . . on the calculator screen. Alert teachers will note the con-

fusion and help students to see the meaning that binds the two representations.

Microcomputers also offer some exciting prospects for imgroving students'

understanding of fractions. Although educators have known for decades that in-

dividuals vary widely in their mental pictures of pumber--in particular, of frac-

tional numbers--there has been a dearth of instructional strategies that can support

a wide variety ofapproaches to picturing and manipulating numbers. With its ca-

pacity for displaying different visual models of number concepts, such as in the

program described by Levin which invites students to estimate numbers by shooting

a "harpoon" at the number line or at the Cartesian plane, the computer promises

to increase the supply of such strategies. (12)
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Conclusion

The technological adv ances of the past decade that have resulted in the hand-
held Lalculatv and the microcomputer have run parallel vv ith the advances made
by the set of fraction research projects described in this chapter. The analyses and
strategies that have resulted, combined vv nh the technological aids that hav e been

developed. Improve the chances of teachers for establishing an understanding of
fractions as a real prerequisite to secondary school mathematics, one that can be

fulfilled by most secondary school students.
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I hale a two-part question concerning algebra. First, students in
Algebra! seem to be at several different levels of understanding of
variables and equations. What characterizes those different legls?
Second, even when they are taking Algebra II, many students seem
to have mastered only mechanical skills and they cannot adapt
them to new situations. For example, they may recognize that
factoring can be applied to a' + 2ab + b2, but not see that it can
also be applied to & + 2a2b2+ b4. What contributes to this
inability to adapt algebraic techniques?

As many teachers know from experience, :,uccess in Algebra 1 does not guar-
antee success in Algebra II. The techniques, learned in the first course often stall
at the mechanical les el nd give little help in the second course's applications

Furthermore. it appears from recent research that sueeess in Algebra 11 does
not guar,mtee an understandIng of equations and sariables deep enough to permit

students enteling college mathematics to translate freely between word state-
ments aod algebraic expressions. The algebraic skills and understanding of many
ot these students stall at a more tidvanced. yet still intermediate. level (4, 5. 6.
IS)

The difficulties involved in developing a deep understanding of algebra result
in part from algebra's has mg seseral different faces. On the one hand. it is a kind
of generalized arithmetic, ugh central roles for addition. subtraction, multipli-
cation, and division. On the other hand, it is a structured system for formulating

and manipulating sanables and formal mathematical statements Because of mis-
conceptions or slow cognitise deselopment, young people may succeed in some

applications but fail to connect algebra It, its broader mathematical,applkations
The teacher's question that begins this report provides one such example. the re-
sults of the recent National Assessment of Educational Progress (NAEP) provide
another.t3) Around 40 percent of l7-year-olds with one year of algebra were able
to solve linear equanons in one unknown. The comparable figure for 17-year-olds

with two ),ears of algebra was 60 percent In both groups, however, the success
rate tor applying algebraic knowledge to word problems was consistently much
lower than 40 percent. The researchers who interpreted the'NAEP results noted:
"It appears that although additional study in algebra may improve students' al-
gebraic skills, it does little to help them learn to apply those skills to solve prob-
lems." (3, p. 60)

Recent research has prosided a clearer picture of student misconceptions about
algebra and of the nature of the various levels of algebraic understanding. This
has been achieved through careful testing, followed by cornprehensive student
Interviews and instruction that fits the student needs identified in the interviews
Rather than just focusing on whot an algebra student learns, researchers can now
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focus on how algebra is !earned. as well.

This report describes the major re..earch findings and the recommendations

drawn from them. In the first section we focus on the student and discuss the ma-

jor misconceptions and errors that have been uncovered. In the second section we

concentrate on the concepts Ralgebra and discuss the several levels of meaning

ot these concepts-, as well as factors that may limit a student tosine meaning level

while blocking access to the other levels. The third section lists suggestions from

jresearchers and other educators for 'eliminating misconceptions and errors and

for broadening students' understanding of algebra.

Student Errors and Misconceptions'

The concepts of variable and'equation are central to algebraic understanding.

and so misconceptions surrounding these two concepts are central to failure in al-

gebra. Wagner conducted a study to delineate some of the early misconceptions

that are commonly developed. (22) She intervieNAed 30 students from the ages of

10 to 18, and her focus was conservation of equation--that is. the ability of an in-

dividual to. recognize the irrelevance of changing noncritical attributes, in situa-

tions in which variables and equations appear. For example, eta student was

shown the equation 7 x W + 22 = 109. The interviewer then said, "I'm going

to change this W to an N." and showed 7 x N + 22 = 109. The student was

then asked which would be larger, W or N. Those who indicated correctly that

the change made no difference were deemed conservers. The nonconservers looked

upon the second equation as a whole new problem and, indeed, it was not un-

common for nonconservers to say that, if the two equations were solved, the first

equation would yield the higher number because W conies later in the alphabet

than N. Less than half of the students gave conserving responses to the task and,

though there was little correlation between age and conservation, there was a sig-

nificant correlation between conservation anticompletion of at least one semester

of algebra.
Wagner noted one tendency among the older nonconservers that is related to

an apparently common misconception about equations: they were convinced that

they had to solve for W and N before they could answer the interviewer's ques-

tion. The implication seems to be that many students view the equation sign as a

signal to do something, rather than as a statement of relationship.This is a phe-

nomenon that is familiar .among elementary school students. Many can answer

6 +0 = 9 correctly, but are stymied by 9 6 +0, the equation sign not ap-

pearing in the latter case in the customary "action" position ("6 + 3 equals 9").

It now appears that the misconception lingers for many older students as well.

Another misconception about algebra has shown up in at least live unrelated

studies from several countries, namely the persistent impression that variables are

labels for objects, not number representatives. Foi example, in an assessment of

the mathematical understanding of British children, there was the following task:

"Blue pencils cost 5 pence, red pencils costs 6 pence. I buy 90 pence worth. If
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b is the number of blue pencils bought and r is the number of red pencils bought,
what can you write down about b and r 1' Nearly 20 percent of the 14-year-olds
tested answered with the equation b + r = 90 which indicates they saw b and r
as labels for the objects purchased. (8) Similarly. Ekenstam and Nilsson noted from

their assessment of mathematical understanding among 16-year-old Swedish stu-
dents. "It seems probabk that almost oery student would have given the correct
answer to the problem 'Write in lowest terms 15.'15: but only about half of the

students mastered a,a. a sign that it was not clear to the other half that the_letter
is used as a number representative." (7, p. 64)

In the United States, some recent research has shown that this misconception
persists into adulthood. Clement and his colleagues asked a group of college en-
gineering students to express the following sentence as an equation, using S for
students and P for professors. "There are six times as many students as profes-
sors at this university." Only 63 percent of the students gave a correct answer like

S P. while a typical wrong answer was 6S = P. During interviews, many of
the students mho responded with 6S = P maintained that the equation mem "For
each 6 students there is 1 professor." To them, S apparently was a label for stu-
dents. not a symbol for the number of students. and the equation sign signalled a
correspondence. rather than a number equivalence. (4, 5, 6. 18)

N1AEP uncovered a similar'w..fikness in translaticg from word sentenc'e

,Igebraic expression. Only 45 percent of American 17-year-olds w ere able to do
the follow ing translation problem correctly. "Carol earned D dollars during the
week. She spent c dollars for clothes and F dollars for food. Write an expression
using D. C. and F that ghows the number ofliollars she had left." (3)

Researct. into algebraic understanding has revealed some coannon pitfalls in

manipulating and'interprettng algebraic expressions:
A tendency to mix numbers and letters. When asked to "add 4 onto 3N",
nearly half of British 14-year-olds responded with either 7 or 7N. (8)
A weakness in dealing with denominators in equations. While 70 percent
of Swedish 16-year-olds were able to solve 3(3x - 2) -= 2x, less than 30
percent were able to solve (3x - 2)/2 = x/3. (7)
A tendency to ignore operations in generalizations. Kieran calls "one of
the most common errors made in algebra" the inappropriate generaliza-
tion of 7a + 7 = a to 7a - 7 = a -; (12)
A tendency to ignore the hierarchy of operations in the solving of an equa-
tion. Thus 2 + 3 x 5 is read as a string from the left ("2 3 is 5 times 5

equals 25"), rather than an expression tied to a hierarchy ("2 + 3 x 5 equals

2 + (3 x 5) and that equals 2 + 15 which equals 17"). (12)
A weakness in interpreting inequalities. The NAEP researchers,stated that
inost.13- and 17-year-olds "did not understand the special properties of
inequalities and appeared to treat inequality relationships as equa'Aties,"
For example, about 40 pgrcent of the 17-year-olds failed to reverse the in-
equality by a negative number. (3, p. 57)
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A lack of tannhanty with the notation associated with functions, In the NAEP

assessment, 86 percent of the 17-year-olds correctly answered an exercise

like "What is the value of a + 7 Aen a = 5?", but only half as many 17-

year-olds were correct on the structurally similar exercise. "If f(a) = a +

7. what is f(5)?" (3, p. 67)

Some, if not most, of the misconceptions and errors that complicate the learning

of algebra,ike rooted in students' first experiences in algebra and the conceptual

frameworks they create to assimilate those experiences. Kieran's research has

shown how students naturally build their frameworks on their arithmetic experi-

ences and how. if this is not done carefully, it can lead to errors, (II, 1-2) She has

idennfiedseveral so-called "conceptual schemes" that underlie the initial learn-

ing of algebra. among them:

I. Quasi-equaluy scheme, which is based on the notion that the equarsign is

an operator calling for action, rather than an indicator ofequivalence. Two

kinds of errors can result from too strong a reliance on this scheme. First,

equations WitKan unknown on the :ft side are solved inoterms of the first

numeral on the right.side. Thus. 4 + x 2 + 5 = 11 + 3 5 is solved

by many students a if it were 4 + x 2 + 5 = 11 and they put in 4 for

x: 4 + 4 2 + 5 = 1 1. Second, students derive the notion that "it doesn't

matter when you perform the operations, as long as they gect totaled up

sometime." Thus. Kieran reports that after wdting 4 + 4 2 + 5 = II
for the above exercise, many students continue vith 4 + 4 + 5 =

11 + 3 5 = 9, In.their minds, the task of finding a numier for x and

the task of combining the numbers on the eight side of the equation are not

as integrated as they should be.

2. Redistribution scheme, which is based on the notion that "taking some-

thing off one number and adding it to another does not change anything,"

Thus. 37 + b = 168 could be transformed to 47 + b = 158. where 10

is added to one side and removed from the other. Of course, the same scheme

applied on one side of an equation is valid: 3x + 17 = 47 is equivalenwo

3x + 5 5 +.17 = 47.

Levels of Meaning and Levels ofReadiness

What makes the learning of algebra especially difficult, and so too the teach-

ing of algebra, is the matching of levels of meaning with the levels of learner

readiness. Each of the primary algebraic conceptsvariable and equationcan

have several different meanings, depending upon context, dnd a learner's ability

to understand and make use of a particular meaning depends in good part on that

learner's cognitive development. (For a more complete treatment of cognitive

development, see the chapter "Individual Differences Among Mathematics

Learners.") For the present it suffices to note that until they are in early adoles-
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ceuee (12 to 14). most children are concrete operational (in Piagetian terminol-

ogy) and their thinking is largely tied to their perceptions. Once they enter the

formal operational stage of cognitive dev elopment. they are able to do more hy-_
pothetical reasoning. keep two or more variables in mind at one time, think about

their own thinking, and so on.
The lines of cognitive dev elopment are never clearly drawn. In any random

group of teenagers, there are likely to be individuals who are in the early concrete

operational stage. others who are late concrete operational. and still others who
are early formal operational. When such a group is introduced to multilevelled

concepts like algebraic equations and variables it is not surprising that funda-
mental misconceptions arise. Furthermore. as Matz points out, when young peo-
ple move from arithmetic to algebra in their schooling, they are quietly expected
to take a giant leap in their mathematical problem-solv ing strategies, while they

have learned to expect in arithmetic that merely apply ing algoiithms like long di-

vision will see them through. in algebra they must compose and carry out plans

for solution. (15)
Matz identifies several meanings for the concept of equat:on. First of all, there

is the meaning that most elementary school children attach tv it. namely. a con-

nection between a procedure and a resultdoing the operations on the left side

of the equal sign produces the answer on the right side of the equal sign "An-
swer" is an essential component of this meaning of equation An example of what
people have in mind when they apply this meaning is 6 + (7 x 2) = 20. Sec-

ondly. there is klutologic al waning. \ith the equation used as an expression of

equivalence between two algebraic expressions. Examples are (x + 2)(x 3) =
+ 5x + 6 and 4x + 12 = 4(x + 3). Lastly. there are equations used to ex-

press constraints on cii iabh s, usually ins iting solution. An example is the linear

equation 3x + 3 = 2x + 7.
From a transcript of a classroom lesson. Kemme illustrates how multiple

interpretations of equation" 4. a n drive a \sedge into teacher-student communi-

cation. (10).1n the transcripts the teacher posed a problem:

There is a certain number of students in the classroom. If there are twice as
Inany and then another 10 were added to it, then there would be 42. flow numy

students are there?

Several students arrived quickly and intuitiv ely at the solution 16. The teacher.
still hoping to use this problem to illustrate how to translate from word problem%

to equatios, asked. "WLat kind of equation could you write in this case?" Since

they knew the solution, several students answered, quitc legitimately: "x = 16."
The teacher, of course, wanted the equation 2x + 10 = 42 as an answer, To the
teacher, "equation" had a definite functional meaning, a tool for figuring out the
solution. To the students, the term "equation" included a tautological meaning;
the mere statement oc the answer. Because of these different meanings, the class

discussion turned into a verbal wrestling match, with the teacher trying to twist

1.16
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his desired equation trom the students, w hile they remained unpersuaded and

confused.
Kemme's transcnpt illustrates a common trap for teachers of secondary school

mathematics. It is all too tempting. as Herscovics and Kieran point out, to con-

centrate on training students to deNelop their skilg in manipulating equations and

to ignore an entirely different skillconstructing meaning for the concept of,

equation. Kieran's reseamh has convinced her that facilitating the learning of this

skill-is not an easy task. The impression among most adolescents that equation%

are what they appeared to be in arithmeticexpressions of the process that be-

ams with a computation and ends w ith an answeris an impression that resists
change. t 12) The section of this chapter entitled "Teaching Algebra" diseusse

some proven methods for changing this impression.
At the same time they are constructing meaning for the concept of equation,

students must aiso come to grips with the several levels of meaning for the con-

cept of variable it' they are to develop a deep understanding ()land facility with

algebra. Hart's report of England's extensivesesearch program, Concepts in See-

ondary Mathematics and Science (CSMS), lists six different ',interpretations that

algebra students must attach to the use of letters in equations (8) We list these

interpretations and include examples of questions where each interpretation is ap-

propriate.

I. The letter has a numerical value from the outset"What can you say about

M if M = 3N + 1 and N = 4?"
2. The letter is not used directly. and can be ignored to the extent that it need

not be evaluated"If A B = 43. A B 2 ?"
3. The letter is used as a shorthand for an object, or for an object in its own

right. For example,'"2A 5A F.= ? "

4. The letter is used as a specific but unknown number"Add 4 onto

5. The letter is used as a generalized number, able to take on more than one

value"What can you say alF6iit C if C D = 10 and C is less than D?"

6. The letter is used as a variable, that is, it represents a range of unspecified

values, and a systematic relationship is seen to exist between two such sets

of values"Which is larger, 2N or N 2?.. To understand this question

well enough to answer it. a student must be able to grasp howboth 2N and

N -1- 2 will way as N varies.
The CSMS study revealed that the majority of British students aged 13. 14 or

-15 were not able to cope consistently with exercises that called for Interpretations

4 through 6 above. To Hart, this implied they were still concrete-operational and

that they would need to develop into the formai operational stage before they could

move smoothly among these last three interpretations. Since a basic understand-

ing of algebra depends at least on Interpretation 4 and later applications of alge-

'bra depend on Interpretations 5 and 6, it is clear that it is possible to overtax the

readiness of many teenagers to solve algebraic problems. It is important to chal-

,
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lenge algebra students, but it is equ,dly important to align the challenges w ith their

cognitive development.
Some researchers have sought to define that alignment more clearly. From his

w'ork with engineering students described earlier. Clement reminds us that un-
derstanding an equation in two variables (S and P in his problem) appears to re-
quite an understanding of the concept of variable at a deeper level than that required

for a one-variable equation. (4) AM conducted a study to determine whether in-
dividuals were more successful s ith one approach to solving equations than w ith
another, according to their level of cognitive development. (I) She considered two

approaches to solving equations:

I. The reversal method: 6 x 2

3

"What must I subtract
from 510 leave 2?". so ...

3

"What divided by 3 gives x 2 = 9
3 as an answer?", so ..?

"What number, take away 2,
leaves or, so...

2. The ompemanon method (if you act on' one side of the equation, com-
pensate by doing the same to the other side):

5

3

3

3
x 1 x-2_x-1

3 3 3

x 2

3
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9 3tx 2)

3

Ath concluded from her study that, of the two methods. tiv: reversal method was

much easier to leain for indikluals at the early concrete operational stage than

tor individuals at the earl) formal operational stage. For the latter group; the re-

sults did not favoe either method over the other.
Errors and misconceptions in algebra arc not random. It is a new terrain for

:students, quite different in itsdemands than the arithmetic they are used to, and

die majority of students begin their algebra experience with developmental lim-

itations. As a result. many overgeneralize the rules that have worked forthem in

arithmetic ("Which.has the Jarger solution, GN + 3,-4- 41 or GT + 3 = 41? I

won't know until I find the numbers that work.") 9,i the rules that have worked

far them before in algebra ("Solve x2 3x + 2 7/ 7. When I had x2 3x + 2

r- 0. I set x 1 = 0 and x 2 = 0, so x = )' or x = 2. Now I'll set :, 1

--= 7 and x 2 .--- 7, so x = 8 or x = 9"). f)fatz studied this phenomenon of

over-generalization and concluded that adept problem solvers generally try to re-

write an unfamiliar peoblem so it can fit a relevant rule, while unsuccessful al-

gebra problem solvem get hooked into alterin ,/the rule to fit the unfamiliar problem

Changing a rule to fit a problem isn't alw. ys wrong ("There probably is a rule

that says that aX + ay + az --z- a(x + y z) since there is a rule that ax + ay

a(x +. y).''). but Matz's work con9tms that bud problem solvers arc not

trapped into using it as a general straw ,y. (15)

Teaching AlAra
Mady of the research studies dm have investigated how young people learn

algebra have also contained teaching components. Once the researchers have

identified thought processes. suectissful strategies. errors, and misconceptions;

they applied some experimental qstruction in an attempt to eliminate the errors

and nusconeeptions. For exampy, Ilerscovics and Kieran recognized how natu-

ral it is for teenagers to perceive hluebra as generalized arithmetic and so they de-
. I

signed a Sequence.of instilment-nil that can take advantage of this perception, while

i,t minimizes some of the Ns ? generalizations many young people make, (9) In

opting for this strategy, the 5esearchers were on solid ground made evident by

teacher effectiveness research. effective mathematics teachers identify and com-

municate the continuity of iliathematics to their students. (2)

Herscovics and Kieraty also chose to heed the research on cognitive devel-

opment. and so avoided a 1 early plunge into a totally symbolic approach to equa-
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tions and unknowns. Instead, they began by working w ith their students (12- and

13-year-olds) on strictly arithmetic equations, focusing on the notion or equiva-

lence and investigating the effects of N arious operations on equivalence An es-

sential component of their instruction w as a sequence of nondirective questions

mined at giving, students room to Lonstruet meaning for the concept of equation

Thus,

"Can you use the equal, sign' with an operation-on both sides"
produced

5 X 4 = 4 x 5
2 + 6 = 1- /

'Can you give me an example with a different operation on each side'

produced

5 + 5 = 5 X 2

"Can you give an, example in which you have more than one operation on each

side?"
produced

4 x 3 + 1 3 = 3 x 2 + 4
3 4- 5 + 4 = 12 4 + 4

The researchers defined such identities as "arithmetic identities," leaving the

term "equation" for the algebrak usage, and leaving themselves free to build the

bridge from the familiar "arithmetic identity" to the less familiar "equation

Given the evidence that cognithe development is an everpresent influence on a

young person's intinal learning of algebra, the researchers recognized that bridg-

mg the two must parallel the bridge from concrete representations to abstract rep-

resentations. Hence, the first step on the bridge was to cover one of the numbers

in an arithmetic identity with a finger and to define "equation" as "an arithrnmic

identity with a hidden number."

What's the hidden number in this equation?"
+ 5 + 4 = 12 4 + 4

At the next lek,e1, the hidden number was represented pictoiially, namely, with a

box:

6 + 0 1 = 5 X 2

Finally, after working w ith equations represented in these concrete and pictorial

1 2
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way, the students were ready to deal with the abstract representation:

2 x a + 5 = 7 + 6

Interested teachers should read Kieran's papers (II, 12) and the article by

Ilerscovies and Kieran. On Briefly, however, their research study led to the fol-

lowing two conclusions:

I. The throwback notion among young teenagers that equations are expres-

sions of action_in which numbers are acted upon mid answers produced,

though resistant to change, does tend to change after an instructional se-

quence like the one described above.

\Vhen rscovics and Kieran tested their students after a summer layoff,

they found that gathering unlike terms (e.g., saying that 7a + 5 = 40 is
equivalent to 12a = 40) had become stronger, not weaker, as a conceptual

scheme applied to simplify equations. As Kieran points out, however, re-

search on how people process and retrieve information shows that old ideas

die hard, even after instruction has seemed to put the wrong old ideas to

rest. Renewed,instructiofiagain based on the student's construction of

meaning for The concept of equationwould seem to be necessary to al-

lpw many students to assimilate the appropriate schemes for handling

equations.
The researchers made the following three recommendations:

I. A sequence like the one outlined above should precede the more tradi-

tional and typical initiations to algebra, like "think of a number" exer-

cises and word problems.

To circumvent the sort of confusion about conserving variables that Wag-

ner reported, a variety of letters should be used to represent hidden nuni-

bers in equations.

3. Teachers should not be too directive in teaching "Do the same operation

to both sides ot the equation." The students who worked with lierscovics
and Kieran settled comfortably into this strategy as a way to decide if two

expressions were equivalent ("Someone started to solve this'equation: 6

+ 39m 4 4- 2 = 43. This was the way they started off: 6 + 35in +

2 = 43. Is it alright to do this, or not?'"), but the novice students, espe-

cially, did not find the strategy helpful in solving equations.

Cognitive development is an ongoing process of assimilating information into

conceptual schemes and adjusting the conceptual sehemes accordingly, It is not

always a process that progresses smoothly, however, and so occasional lapses in

students' algebraic skills and understanding should be expected by teachers,

When Hart and her colleagues realized from the CSMS study that so many

British teenagers had little access to three of the six interpretations of letters used
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in equations, probably because of their not having developed yet beyond the con-

crete operational stage. they saw the need to recommend activities that arc more

pictorial than symbolic, and so allow concrete-operational students to construct

meaning for the concept of variable. Here is a suggested exercise. (8, P. 118)

Ask students to find the number of white tiles needed for peihaps 10, 20. 40,

and eventually 100 black tiles. Challenge them to come up with a rule tluit

expresses the relationship between the numbers of black and white tiles.

With many pre-algebra students any discussion of patterns or rules need not be

expressed symbolically or algebraically. What is more important is that they have

the chance to become familiar with, and discuss, variable relationships such as

the dependency in the above example of the number of black tiles on the number

of white tiles.
The longer an algebraic misconception persists, the harder it is to remove it

through instruction. Rosnick and Clement confirmed this principle when they

worked with nine of the students who reversedthe variables S and P in the stu-

dent-professor equation. (18) They tried seven different ways to change the pat-

tern of reversal, ranging froni just telling the students that the reversal is incorrect

to asking the students to draw graphs or to test the equations by plugging in num-

bers. At least seven of the nine students demonstrated to the researchers, in one

way or another, that they maintained the reversal misconception even after the at-

tempts at remediation.
What can teachers do to prevent misconceptions about algebra from becom-

ing so deeply rooted? One strategy is to engage students in an early, pre-algebra

process of constructing meaning for equations and variables, such as that pro-

posed by Herscovics and Kieran. Teachers can also guard against the growth of

misconceptions by carefully monitoring their own use of language in algebra

classes. For example, Rosnick points out how easy it is for teachers to drift into

careless remarks like "Let P = professors," rather than the more pedagogically

sound Let P = the number of profess'ors." (17) As is clear from the work of

the researchers cited in this report, both "equation" and "variable" (or "tin-

known',') have multiple levels of meaning, and the meanings a teacher attaches

to the concepts at any one time must match the meanings attached by his or her

students.
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Usiskin has developed an extensiv e program to incorporate meaning into the
learning of algebra through the regular use of applications. (20) In particular, the
goal of the program, Algebra Through Applications, is the construction of alge-
bra out of real-world problems. rather than the application of an already-con-
structed algebra to real-w orld problems. Usiskin has eliminated some topics he
believes need no attention in beginning algebra. such as traditional word prob-
lems ("John can shcvel a walk in 3 hours and Mary can shovel it in 2 hours. How
fast can they shovel the walk if they work together?"), trinomial factoring
tx= + 6x + 8 = (x + 4)(x + 2)) and the manipulation of complex fractional. Iexpressions (I I)

4

Instead, the program emphasized probability, , statistics, operations, and
problems and patterns arising from real situations, such as politics and various tasks

in measurement.
The program has been independently evaluated, with groups using the pro-

gram- compared with groups taught traditionally in 17 schools. (19) For the most

part, there was no significant difference in achievement between the two groups
on achievement, on several tests, although in 6 of the 17 schools the applications

group did significantly better on a test designed to capture the materials in the

program and did no worse than the traditional group on a standardized algebra test

The reseaKehers who conducted the evaluation concluded that, at the very least,
the materials can be used with traditional first-year algebra textbooks as a source
of relevant applications. They did, however, recommend that schools adopting
the rnateriiils conduct a faculty seminar on their use.

Microcomputers promise to be a rich soutve of algebra learning activities. Since

many algebraic inv estigations can become mired in lengthy computations, the

computer can make such investigations more accessible.
Determining the solutions of potynomial equations provides one such exam-

ple. Given a positive integer N and integers Ao, A , A. hoW could you find

solutions for ANx5 + Ax + + A,x + A = 0? For advanced algebra
students the question is a rich one, loaded with potential mathematical learning,
but prohibitive because of the computations required. Moursund has developed a

program for the, microcomputer that allows students to probe their way, using graphs

and tables, to the discovery of solutions. (13, 16) Zabinski and Fine have shown
how the computer can be used to develop a discovery approach to quadratic
equations. (23),Landry has detailed how his students' use of microcomputers to
approach a topic foi which the computer is not particularly well-suitedsolving
linear equations like 3x + 2 = 4x 7led with some incidental development
to new and deeper insights into linear equations. (14)

The potential of the microcomputer as an algebra teaching and learning aid is

undeniable. One study has confirmed the value. As a follow-up to their research
into algebra misconceptions, such as the student-professor equation reversal,

Clement, Lochhead, and Soloway attempted to find ou; if a basic introduction to
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computer Programnimg, where variables clearly represent numbers,and where an

equation expresses the equivalence resuldng from the interaction of variables and

numbers, could chaiige the- misconceived -tendencyamong many veteran algebra

leaMers to perceive variables as labels for objects and equations as statements of

correspondence between the labeled objects. (6) The researchers found that with

just sonic introductory programming
experience, most students who tended to re-

verse variables wrote equations correctly when they constructed them in a pro-

gramming context C'At the last company party, for evety 6 people who drank soda,

there were II people who drank punch. Write a computer program in BASIC which

will output the number of punch drinkers when supplied with the number of soda

drinkers. Use S for the number of people who drank soda and P for the number

of people who drank punch.") Concerning their results,'the researchers hypoth-

esind: "Computer programming apparently encourages an active, procedural view

of equations that many students fail to use in the context of algebra." (6,p. I)

The results of this study are exciting in themselves and they are even more

exciting because of the compatability they hint at between computers and the

teaching of algebra. Further research is imperative.

Conclusion

In this chapter we have focused on the concepts of variable and equation. Other

topics are important to algebra teachers and students, of course, such as functions

and graphing, but since the effective learning of all topics hinges on an under-

standing of variables and equations, we have chosen to concentrate oil the two

fundamental concepts in this report and to leave the others for treatment else-

where.
Perhaps more during beginning algebra than at any other time in their school

careers, secondary school students must sec mathematics as a foreign language.

There are multiple levels of meaning and various visual and symbolic represen-

tations. As with any foreign language, translation skills are essential to success.

and algebra students must learn to translate between visual and symbolic repre-

sentatiobs and among the, several levels of meaning for variables and equations.

Helping students to learn these translation skills is ope of the most difficult tasks

faced by anyone in the teaching profession, and despite the promising textbooks

and computer programs that have appeared and that will appear, the teacher re-

mains at the center of that task.

References

1. Mi, Helen. 1978. "Intellectual Development and Reversibility of Thought in Equa-

tion Solving." Journal for Research in Mathematim Education 9: 204-213.

2. Campbell. N. Jo, and Schoen, Harold L. 1977. "Relationships Between Selected

Teacher Behaviors of Prealgebra Teachers and Selected Characteristics of Their Stu-

dents." Journal for Research in Mathematics Education 8: 369.375.

12 131



7i'aching and Learning Algebra

* 3. Carpenter, Thomas P., et aL 1981. Results from the Se(and Mathematics Assessment
of the National Assessment of Lducanonal Progress Reston, Virginia National Council
of Teachers of Mathematics.

4. Clement, John. 1982. "Algebra Word Problem Solutions. Thought Processes Under-
ing a Common Misconception:* Journal fot Research in Mathematics Edu«ttion

13: 16-30.

* 5. Clement. John, Lochhead. Jack, and Monk, George S. 1981. "Translation Difficul-
ties in Learning Mathematics." The Aineruan Mathematical Month!) 88. 286-289

6. Clement, John, Lochhead. Jack, and Soloway, Elliot. 1980. Positive Effects of Com-
puter Programming on the Student's Understanding of Variables and Equations Am-
herst, MA. Cognitive Development Progect, University of Massachusetts, Amherst

7. Ekenstam, Adolf A'f, and Nilsson. Marva. 1979. "A New Approach to the Assess-
nient of Children's Mathemaccal Competence." Educational Studies in Mathematics
10: 41-66.

* 8. Hart, K.M., ed. 1981. Children' s Understanding of Mathematics. 11-16. London,
England: John Murray Ltd.

* 9. Herscovics, Nicolas. and Kieran, Carolyn. 1980. "Constructing Meaning for the
Concept of Equation." The Mathematics Teacher 73: 572-581.

10. Kemnie. S.L. 1981. -References of Speech Acts as Characteristics of Matheniatical
Classroom Conversation." EducationalStudies in Mathematic 12: 43-58.

I I. Kieran, Carolyn. 1980. "Constructing Meaning for Non-Trivial Equatins Paper read
at the Annual Meeting of i,._ Amencan Educational Research Association, Boston,
Massachusetts.

12. Kieran, Carolyn. 1982. "The Learning of Algebra: A Teaching Experiment Paper
presented at Annual Meeting of Amencan EduCational Research Association, New York
City.

*13. Knst, Betty J. 1981. "Algebra and Instructional Computing" Viewpoints in Teaching

and Learning 57: 55-70.

14. Landry, Michael. 1980. "Algebra and the Computer." The Mathematics Teacher 73.

663-668.

15. Matz. Marilyn. 1980. "Towards d Computational Theory of Algebraic Compe-
tence." The Journal of Mathematical Behavior 3: 93-166.

*16. Moursund. David. 1980. "Program to Help Study Polynomial Equations " Paper read
at Annual Meeting of National Council of Teachers of Mathematics, Seattle, Wash-

ingtqn.

*17. Rosnick, Peter. 1981. "Some Misconceptions About the Concept of Variable " The
Mathematics Teacher 74: 4 i 8-420.

18. Rosnick, Peter, and Clement, John. 1980. "Learning Without Understanding. The Effect
of Tutoring Strategies on Algebra Misconceptions." The Journal of Mathematical Be-
havior 3: 3-28.

19. Swafford, Jane 0., and Kepner, Henry S. Jr. 1980. "The Evaluation of an Applica-
tion-Oriented First-Year Algebra Program:: Journal for Research in Mathenwtics
Education II: 190-201.

132 12?



mmwomr-,

Packing and Learning Algebra,

20. Usiskin, Zalman.:1979. Algebra Through Appluations. Reston, Virginia: National

Council of Teachers of Mathematics.

* 21. Usiskin. Zalman. 1980 "What Should Not Be in the Algebra and Geometry Curri-

cula of Average College-Bound Students?"
The Mathematics Teacher 73: 413 426.

22. Wagner, Sigrid. 1981. 'Conservation of Equation and Function Under Transfon»a-

lion of Variable." Journal fOr Re.search in AI athenuttics Education 12: 107-118,

23, Zabinski, Michael P. and Fine,,Benjamin. 1979. "A Computer Discovery Approach

for Quadratic Equations. The Mathematics Teacher 72: 690-694,

12.ti

133



THE LEARNING AND TEACHING
OP GEOMETRY

1 2 d



Does traditional deductive geometry have a future in the
curriculum? Many students find it very difficult and I find it
difficult to convince students they should take it.

Among adults' recollections of school irathematics, those connected with high

school geometry are often die most vivid. Tb. combinations of propositions. proofs,

problems, and constructions that aresncoonered there seem to leave few indi-

viduals with lukewarm reactions. Either Cy: experience was refreshing for them

in"its consistency and clarity, or it wa infully fnistrating. Because the latter re-

action is not uncommon, and because about 50 percent of high school students

now choose not to enroll in geometry courses (14), some educators question the
value of traditional Euclid-based geometry and wonder whether we shouldn't just

let it disappear frofilthe high school curriculum.
When it is viewed as the study of space and spatial relationships, and not jiist

as the-deductive system that Euclid built, geometry has an acknowledged solid

footing in mathematics education. Usiskin (22) cites three reasons for this solid

footing:
i) Geometry connects mathematics and the real workl.

ii) Geometry enables ideas from other areas )1' mathematics to be pictured.

For example. geometry lends visual aid to subjects like advanced algebra

and calculus. and hence makes them more accessible to...learners.

iii) Geometry is an example of a mathematical systenikfact, one of the
earliest examples available to students.

The force of such sta nding. in the mathematical family argues against elimi-

nating geometry from the high, school curriculum. Yet, undeniably, geometry lacks

stature among high school students. In the recent National Assessment of Edu-
cational Progress (NAEP) in Mathematics, "doing proofs" received the lowest

"I like rating by seventeen-year-olds from a list of content topics. Worse yet,

less than 50 percent saw the topic as important. (2)

Thus,.the concern of teachers like the one whose questions opens this chapter

is very realistic, it divides into two questions that may be addressed by research-

ers and curriculum developers. First, why do so many students have trouble learning

deductive geometry? Second, what strategies and materials are available for making

geometry understanding more accessible to students?
The remainder of this chapter treats each question in turn. In brief, an answer
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to the first question is taking shape from several research studies that have iden-

tified some apparent mismatches between traditional geometry instruction and the

cognitive needs of most teenagers. Out of this and related research and devel-

oppent come answers to the second question. In particular, the strides made in

delmeating the several levels of geometric understanding, combined with the tre-

mendous potential for using microcomputers to aid in geometry instruction, make

it appear that geometry, somewhat changed in cont,:nt and presentation will an

new life in the high school cumco,ilum.

Difficulties in Learning Geometry

Young people can have a variety of difficulties in learning geometry, ranging

from vocabulary to visu4ir.anon, and from making deductions about the pre}

ernes,of geometric figures to applying those properties to real-worid problems

During the past decade several studies have probed the nature of those difficul-

ties, while others have sought their source.
In its geometry section the recent National Assessment uf Educational Prog-

ress (NAEP) dealt primarily with geometry ideas students would probably en-

counter outside of a formal course in deductiv,. geometry. The results showed that

students could generally recognize geometry figates, but they were less success

ful in their knowledge about properties of those figures (for example, that the sum

of the angle measures of a triangle is 1800). Furthermore, high school students

who had taken geometry for a year generally scored much higher in knowledge

about geometric properties than their peers with no formal training in geometry

Even in figurerecognition, students tended to run into problems if certain vocab-

uhiry terms like "congruent" or "symmetric" were used. When'a problem used

the phrase "same size and shape" rather than "congruent," the success rate for

the problem was considerably higher. (2)
Another NAEP conclusion dealt with problem solving. The majority of both

I3-and 17-year-olds were unable to solve routine problems involving similarity

of triangles or the Pythagorean Theorem, Among the students with a year's ex-

perience in a geometry course, slightly more than half solved the Pythagorean

Theorem problem correctly, while two-thirds solved the following similarity

problem correctly:

30 Ft.

The picture shows how Jose used a short tree to find the height of the tall tree.

What answer should Jose get?

138 131



'Thaching and Learning Geometry

Diffkulnes ;tali Visualmition and Vocabulat3. The NAEP researchers were

able to reach several ()ether conclusions from students' incorrect' answers First,

students can handle some gi:ometric problems much better if they are able to deal

directly with a visual representation of the problem than if they are required to

work from an abstract representation of the problem. For example, when 13-year-

olds were shown variais triples of line segments and asked to Select the triples

thacould serve as sides of a triangle, two-thirds of them were able to do the task

succes0.ully, yet when they were ilk en the same task with only number triples to

work with, almost 90 percent failed the task. More than 80 Percent of seventeen-

year-olds failed the same task. (2)
A second NAEP conclusion concerning studeaus' interpretations of diagrams

will come as no surprise to most geometry teachers. When hard evidence is lack-

ing, students witl often make conclusions based on appearances alone For ex-

ample. in a diagram in which insufficient information was given to allow students

to deduce the size of,a given angle, 30 percent of the seventeen-year-olds were

duped by the angle appearing to be 90°. Among the subgroup 0: seventeen-year-

olds with a year's geometry experience, however, two-thirds responded correctly

that there ivas insufficient information.
In a similar vein. Robinson has listed 25 common difficulties and miscon-

ceptions of students in geometry. (20) For example, she found that many students

have trouble recognizing overlapping triangles, as' in the task of pointing out why

there are more than three triangles in the following picture:

As it appears in this exercise, overlapping is a relation between triangles and,

in fact, most of the 25 difficulties Robinson outlines involve relations, including'

is parallel to
is perpendicular to
is supplementary to
is complementary to
is in the same ratio as
'is congruent to

bisects
Vollrath studied one particular difficulty many students have, namely, recog-

nizing sunilff geometrit shiiPes, (26) Working with young people who ranged in

age from 8 to 19, Vol Ire.th set them to work on sorting tasks---exercises in which

they were shown collection of shapes and aske&I to group together all shapes in a

particular collection that fit a certain criterion. At times the task was .xpressed

as "Put all similar figures together", at other times, the iiistruction 'was "Put all
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figures w ith the same shape together." Neither task proved easy at any age level.

. but an interesting phenomenon revealed itself, one that underscores the impor-

tact: of teachers' awareness of their own use of language. Sorting according to

similar" led students to focus On attributes of particular figures within a group-

ing, while 'same shape" led them to focus on broader patterns. For example.

"similar" led to sorting out all rectangles in a group with the same width, while

"ham shape" led to sorting out all the rectangles. as if the students were iden-

tifying "same shape" with "shape-name".
Milner and Hershkowitz tested over 500 students in grades 7, 8, and 9 to identify

what kinds of images young people,,-utach to certain geometric concepts (25) For

example, when asked to circle-in a group of drawings all of the right triangles,

fewer than 70 percent included and barely 40 percent in-
z

eluded Apparently, are images associated so tightly with the

concept of right triangle that there js little room for variation.
Similarly, when,they asked the students to draw altitudes to yarious triangles.

fewer than 10 percent were able to do it correctly for side a in a triangle such as

The researchers concluded that, in the minds of most young people, the image of

altitude to the base of an isosceles triangle replaces a more general image for tile

concept of altitude.
Fisher studied how students distort geometric concepts because of the influ-

ence of pictures, (5) In particular, she was concerned with the type of distortion

in which students make incidental visual clues into essential features of a con-

cept. Thus, a vertical-horizontal orientation can become so attached to the con-

cept "perpendicular" that something will not seem to be an example of

the concept. Fisher asked the question, "Do students form concepts that are biased

in favor of upright figures?" Her study of 6th-graders, 9th-graders and college

students convinced her that the answer is yes and that, regardless of instruction

favoring upright figures or instruction favoring a variety of orientations, students

at all levels can more easily recognize upright figures than tilted figures as ex-

amples. of concepts.
Proof leads to student difficulties that are probably the most conspicious of

all such difficulties to geometry teachers, in good part because proof is one of the

most sophisticated challenges in all of school mathematics. The chapter "The Path

to Formal Proof" focuses on the topic in detail. The present chapter views it in

context, as one of the last in a line of difficulties, and concentrates on the kinds

of concept and skill development young people must pass through in order to be

ready for deductive proof.
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One model of that development that has received considerable recent atten-

tion is the van Hide model. According to the model, all children progiess through

several levels of geometric understanding. and the van Hides have claimed that

a combination of tnne. content, and teaching methods will carry each child from

one level to the level following it. Several very good descriptions of the van Hick

model are available, and interested teachers can read about it in detail in Refer-

ences 3. 10, 20. 23. 24. 27. Hoffer's description (10) is very well written, and

because he includes many examples witlr his description, we strongly urge tnch-

ers to read it. Briefly, as he describes them, the proposed levels are:

Level 1. Recognition. The student learns some vocabulary and recognizes a

shape as a whole. For example, at this level a student will recognize a picture of

a rectangle but usually won't be aware of many properties of rectangles, such,as

parallel opposite sides.
Level 2. Analysis, The student analyzes properties of figures. At this level a

student may realize thw the opposite sides of a rectangle are parallel and con-

gruent, but will not yet notice how rectangles relate to squares or right triangles

Level 3, Ordering. The student can logically order geometric figures (for ex-

ample. all squares are rectangles, but not all rectangles are squares), and under-

stands interrelationships between figures,and the importance of accurate definitions

Deductive thinking skills are not fully developed at this level. Although stu-

dents at this levei may be able to understand the relationship of the class of squares

to the class of rectangles. and the relationship of the lat, r to the class of paral-

lelograms, they may not be able to deduce why the diagonals of a rectangle are

congruent.

Wirszup has described how deductive thinking begins to take shape at Level

3. As students collect the visual properties of various shapes. the growing col-

lection asks for organization. and that is the start of deductive thinking (27)

Level 4, Deduction. The student understands the significance of deduction and

the role of postulates, theorems, and proof.

At this level students will be able to use postulates to prove statements abput

rectangles and triangles. hut this thinking may lack enough rigor for them to un-

derstand why the postulates are necessary.
Level 5. Rigor. The student understands the importance of precision in deal-

ing withloundations, such as the colldction of axioms and postulates at the foun-

dation of Euclidean- geometry.

This is a level of sophisticated thinking rarely reached by high school stu-

dents. Later, in college mathematics, many will be able to reach an overview of

Euclidean geometry that permits them to adjust to the different systems of non-

Euclidean geometry, where rectangles, for example, do not exist. In the mean-

time, however, the vast majority of high school students never get beyond hon-

ing their deductive thinking skills at Level 4. if they reach that level at all.
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Me pro 1' skills that read) fruition at Lev el 4 begin to develop at earlier levek
and esolve khrLagh their own set of suble% els, Van Dormolen (24) has described

three such 4blevels:
a. Proofs that are very local and case-specific. For example, if asked to de-

scribe Me effect on points in the plane of a rotation through 900, students

at Itii'S sublevel will pick a point, say (2,3), carefully rotate it 90° to get ( 3.

2). %id' s'ti.Op t here. .

b. Proofs that are more general. focussing on collections ofsimilar objects or

cases and not on single cases. With the above example, students at this
suhlevel can look beyond thc single case (2. 3). In fact, they might even
deduce that (2. 3) rotates to ( 3. 2) from the realization that (2. 0) rotates

to (0, 2) and that (0. 3) rotates to ( 3, 0).
c. Proofs that are general. At this sublevel, students can prove that any point

(a. b)rotates to ( b, a).
It is important to point out that the van Hiele model of levcis of geometric un-

derstanding is a hypothetical model. In fact. van Hiele himself has recently voiced

doubts about the existence of Level 5. (23) However, several studies have shown
that the model is a.valuable tool for exploring geometric understanding.

Usiskm and Senk conducted a study of several thotisand high school geom-

etry students to determine what changes in van Hiele ievels take place during the

year of geometr) . and to determine how well the van Hide levels of students en-

tering high school geometry can predict the level of their,proof skills at the end

of their year in geometry. (2 I, 23) Of course. in order to make these determina-

nons, the researchers had to begin by determining how many of the students fit

the van Elide model and, or those who did, what their levels were. With sets of

questions representing tasks at each level as the gauge, the researchers ruled out

students who qualified for mdlevels but not the level in between Here are two
examples of the questions they asked, one for Level I, the other for Level 3:

Level I: Which of these are triangles?

W X

(A) None of these are triangles.
(B) V only
(C) W only
(D) \V and X only
(E) V and W only

Level 3; What do all rectangles have that some parallelograms do not have?

(A) opposite sides equal
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(B) diagonals equal
(C) opposite sides parallel
(D) opposite angles equal
(E) none of (A).(D)

According to their criterion, about three-quarters of the students fit the van Hide

model. Remarkably. over one-half of those students were at Level 1 or bdow!

The study determined that during the year of geometry, more than 50 percent

of those students at the lowest level moved to Levels 2 or 3, but that about a third

of them remained at Level I. (23) Furthermore, the study found that after a full

year ofy geometry course with proof. only about half of the students could do

more than simple proofs. (21) Finally, as a predictor of how well students will do

with proof after a year-long_geometry course, the van Indic model proved to be

somewhat successful. In particular, it appears that if a student enters geometry at

Level 1 or below, there is little chance of success with proof. Level 2 implies a

better than even chance of success. and Level 3 and above imply a good likeli-

hood of success. (21, 23)
Since Maybeny's research indicates that a student may be on different van Hiele

levels with respect to different topics within geometry (18, 23), it is clear that re-

searchers have not finished the task of defining the development of geometric tin';

derstanding. In general, however, the van Ilia: model is proving to be a valuable

tool for the task.

instructional Strategies

Once teachers get a clearer view of students' difficulties with geometry and

the sources of those difficulties, they can begin to adjust their teaching strategies

accordingly. For example. Wirszup points out that one implication of work with

the van Hi& model is that maturation in geometry is a process of apprenticeship,

and not just of development. (27) Consequently. teachers need to explore ways

to smooth their apprentices' learning at each level. Coxford suggests the follow-

ing list fur ctivities at the first 4 van Hiele levels (3):

Level 1. Individual figure,recognition. production, and naming.

Level 2. Determining properties of the figUres.

Level 3. Determining relationships between the figures and their properties.

Thus, what are the properties of parallelograms, how do rectangles fit in with

parallelograms, and so on.
Level 4. Use of Level 3 knowledge to study geometric facts from a deductive

approach. Thus, what can be deduced about the interior angles of parallelo-

grams once it has been established that opposite sides arc parallel?

All of these activities should be carried out through class discussions, based

on student observations and hypotheses. Reiterating what van Donnolen pointed

out, a student settles into deductive proof only in stages, first concentrating on
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single instances of a phenomenon. later collecting similar instances into a pat-
terned array, then finally arguing on the most general level. When students can
verbalize their understanding, or lack of understanding, of phenomena, their piecing
together of clues to discover patterns, and their logic in deducing properties. then
their apprenticeships can-proceed more smoothly.

Some recent research by Greeno and Magone promises to strengthen the
teacher's hand in proof instruction. (6) At the heart of their study was a conic-
n,m that students mut understand what proofs are before they can understand how
to,construct them. In particular. they must appreciate that the rules of formal de-
ductive proof are more stringent than the rules of everyday argument. In the latter
case, statements are expected to be reasonable and noncontradictory in the light
of previous information. Each statement in a, formal proof, however, must not only
be consistent w ith previous statements that have beenaccepted, but must neces-
sarily follow from them.

The. researchers call this "the principle of deductive consequence" and they
decided that a reasonable gauge of students' understanding of the principle would
be a test of proof-checking. give students some completed geometric proofs %kith
hidden errors and challenge them to find the errors. In some instances, the error
might be the listing of a reason for which no geometry theorem or postulate ex-
ists, in others, the error might be the use of a theorem whose conditions had not
been established, either in the statement of the original problem or in previous steps
in the proof. In the follow ing example. the reason listed for Statement I does not
apply because it has not been established that AC is parallel to BD.

a

Given: AB H E.E. and -AB a. D

Prove: LACD =4 LABD

Statement Reason
corresponding Ls
alternate interior Ls
transitive property

The researchers designed a two-hour training program in checking proofs for
15 college students who had taken geometry in high school but h o were not very

good at checking proofs. The program taught the students to apply the following
5 steps whenever they were checking proofs:

I. Check if the reason given for a statement is a v alid definition, theorem, or
postulate.

2. Divide the reason into its "if" and "then" components.
3. Check the -if" part. Has it been shown previously in the given informa-

I. LACD LBDE
2. Z.BDE LABD
3. LACD LABD
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tion. in the diagram, or in the previous steps of the proof?

4. Check the "then" part. Does it match the relationship in the proof state-

ment being checked?
5. If the, staement is the last one in the proof, does it match the goal'of the

problem?
The students were tested in proof-checking along with' 15 comparable stu-

dents who did not take part in the two-day training session. The trained students

were superior in their proof-checking. For example, $ out of the 15 training pro-

gram students were able to detect the error in the example given above, while only

1 out of the other 15 students was able to detect the error. Furthermore, observ-

ers repotted that the program students appeared to read the statements of a proof

more carefully than the others. Finally, in a test to see how well the 30 students

could construct proofs, the 15 program students'were superior to the others,

prompting the researchers to remark: "It seems likely that the training in proof-

checking gave subjects sonic skills that facilitated their performance in proof

construction problems as well." (6, p. 36). The benefits of the two-hour training

session seem remarkably rich, and geometry teachers should consider doing some

similar training of their students in proof-checking.

In his article "Geometry Is More Than Proof," Hoffer (10) points out that

learning geometry involves five kinds of skills :

spatial
verbal
drawing
logicai
applied

lie describes the kinds of activities that typify each of these skills for each of

the van Hide levels, then lists activities that are appropriate for each of the skills

at each level. For example, a verbal skill on Level 3 is "Formulates sentences

showing interrelationships between figures." A verbal aciivity for Level 3 is "Write

a careful and brief definition of the word 'rectangle".

Transformation Geometry
One vehicle that many educators proposeTor paving the way through the lev-

els of geometric understanding is
transformation geometry, that is, the study of

reflections (sometimes call flips), rotations (spins), and translations (slides) in the

plane. Robinson, whose work was cited'earlier as revealing the prevalence among

students of difficulties with relational terms, argues that by studying the effects

of such transfomiationsin particular, what properties stay invariant under them

students can develop meaning for relational terms like "congruence", "perpen-

dicularity" and so on.
For example. congruence remains invariant under reflections, but orientation

(clockwise vs counterclockwise) does not. By experimenting with combinations

of transformations and discussing their effects, students can develop meaning for

relational terms their teachers Will introduce shortly thereafter.
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Transformation geometry is not new to mathematics education. In fact, the
nineteenth-century matheniatician Felix Klein defined geometry as the study of
what properties remain invariant under different sets of transformation. In the case
f Euclid's geometry, that- set comprises combinations of reflectintis. rotations,

and translations in the plane. Transformation geometr; gained some pro! inence
in the so-called "modern mathematics" movement if the nineteen-sixties, and it
has aka) s been Lonsidered part of informal geometry, traditionally suggested for
study in grades 7 and 8 as "the physical geometry of the space we live in. rather
than as an abstract mathematical system." (19)

In most American school systems, if transformation geometry has been taught
at all, it has been taught at the junior high level and separated by at least a year
from formal deductive geometry. This isrnot the case in some other countries, nor
is it the recommendation of most mathematics researchers in this country. who see
a solid role for the topic in high school. Kartowski has pointed out that the So-
viet mathematics curriculum gives equal weight to two aspects of geometry, the

ial-visual and the logicp-deductive. (13) Wirszup has studied the Soviet ex-
ve.rence in designing a geometry curriculum around the van Hiek model. They
pay careful attentionto the "apprentice" aspect of the theory, according to which
a student's development through the various levels depends on instruction and
curriculum content, as well as biological maturation. (27) A-cordingly, the So-
\ lets are quite speLifk in their geometry objectives, for example, aiming to begin
Le\ el 3 work in grade 4. Because of its natural combination of the spatial-visual
vv ith the logico-deductiv e, transformation geometry pla;s a crude] role in this
curriculum.

In Great 'Britain the role of transformation geometry in the curriculum has not
been as substantial as in the Soviet Union, but a recent major study has under-
scored the adv isability of beefing up its role. Hart and her colleaguesA:onduLted
the Concepts in Secondary Mathematics and Science (CSMS) study, a project
similar in scope and in many of its goals to the NAEP study in the U.S. (7) The
study consisted of interviews and tests of British students between the ages of II
and 16. One of the mathematics sections contained a series of questions involv-
ing Lombinations of rotations and reflections. The tasks ranged from relatively
simple questions like:

What is the image of the given point when it is reflected through the
given line?
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to a more difficult challenge such as:
"Explain why E is not the center of rotation in this picture."

The tasks that involv ed combined reflection. and rotations were the most dif-

ficult of all for the students, so difficult, in fa, t. that Hart concludes that trans-

formation geometry can be a. v iable and chedenging topic in the curriculum.

separate from but also complementing deducti, e geometry: "The approach being

advocated is one that directs children toward discoveries from which the rules and

properties of the transformations can be surmised and against which they can be

tested." (7. p. 157) To this Hart adds her firm belief that "such activities are vi-

tal to the development of critical thinking. (7, p. 157)
Research confirms the complementary nature of the spatial-visual and the

logico-deductive in the learning of geometry. In fact the accepted description of

concept development, especially relevant to geometry, pictures children first act-

ing on objects. then internalizing the actions, and finally forming conceptval rep-
resentations. (11 This process, for which there are no shortcuts, holds for older

children as well as younger children. Consequently. students need extended op-

portunities to internalize geometrically-related actions before deductive geome-

try. Transformation geometry offers the framework for such opportunities As Hart

describes it. "The transformations can be internalized in gradual steps, by fo-

cusing first on the actions themselves, then on their representation, and then on

the representation of imagined actions. In addition, the resulting drawing% can he

checked at each step by a return to the actions or by reference to drawings of sim-

ilar problems.' (7. p. 157)
The task of integrating the spatial-visual with the logico-deductive in the ge-

ometry curriculum will not be simple. and it will require further research atten-

tion. As Fisher discovered in her ..tudy cited earlier, students form concepts that

arc biased in favor of upright, as opposed to tilted, figures. -Although the bias

doesn't necessarily stand in the way of geometry learning, it is resistant to in-

struction. Kidder's research into students' comprehension of rqflections, rota-

tions, and translations revealed that few eighth-graders were able to form a mental

image of a figure in the plane and then to mentally perform one of the three trans-

formations on it. (15). Mental representation of such geometric actions seem% to

demand more cognitive sophistication than is available to most eighth-graders,

and this gives further impetus to the inclusion of transformation geometry in the

high school curriculum, as a complement to deductive geometry.
If transformation geometry can be as valuable a complement to deductive ge-
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ometry as researa suggests, a question must naturally arise in the minds of ed-
ucators. "Where do we make room for it in the high school curriculum?"

Usiskin has suggested a route toward making room by calling for the careful
reduLtion uf material ordinarily covered in deductive geometry. (22) In particu-
lar, he recommends eliminating:

a) Early Nigorous proofs of obvious statements involving points, lines, and
angles. He maintains that the facts should be covered, but informally.

b) Expectations that students will be competent with the same general proofs
wntten in the same general way. Usiskin claims: "For judging a proof, clarity
is a more important criterion,than the amount of detail." (22, p. 421) As
corroborating evidence he cites the Soviet research indicating that one of
the hallmarks of a. capable mathematics student is the ability and propens-

ity to find shortcuts in mathematics arguments.
The least important theorems. Usiskin suggests the elimination of 6 sets of
theorems, which he estimates as amounting to 2-3 weeks of class instruc-

tion.

Some may consider Usiskin's suggestions drastic, but their intention is to in-
ject new, life into the teaching of deductive geometry, an area of the curriculum
that needs and deserves new life. The research summarized in this chapter has two
main messages that have a bearing on this new life, the timely involvement of
students in deductwe geometry is a very important and irreplaceable mathemat-
ical experience, the timeliness of that involvement depends upon a carefully nur-
tured apprenticeship in the development of all the skills and understanding that
must precede deductive geometry. . As Wirszup has written. "The teacher's role
in this apprentiLeship includes choosing materials that can orient students toward

becoming familiar with geometric structures, organizing conversation so that the
structures can be uncovered, using customary terms once the structures have been
uncovered, assigning tasks that can be carried out in different ways so that stu-
dents can orient themselves freely, , and finally guiding the students to integration
by helping them to condense to a whole the domain their thought has explored

(27, p. 83)

Conclusion

In essence, Wirszup is underlining the essential role that the teacher plays in
geometry instruction, a role that can be made a bit less weighty by some of the
Nay good materials that are available for classroom use In the category of text-
books that aim toward complementing deductWe geometry as outlined above arc

Hoffer's Geoineto, A Model o f the Universe (9) and Coxford and Usiskin's Ge-

omen). A Tnmsformation Approach (4). If teachers use other textbooks, there are

several sources of ideas and activities that will enrich the teaching of deductive
geometry. Hart's report on the CSMS study (7) contains a series of exercises in
transformation geometry, as does the National Council of Teachers of Mathe-
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manes (NCTM) yearbook on the teaching of geomary (8): Krause's Taxicab Ge-

ometry (16) and the NCTM's A SourcebooA of Applications of School Madwinatics

( I I) are both excellent sources of ideas for enriching geometry instruction.

One final source of support for teachers deserves ine.:-ion, namely, the ex-

citing potential of microcomputer software for improving the learning of geom-

etry. In particular, the microcomputer could prove to be the best bridge yet between

the spatial-visual aspects of geometry and the logico-deductive aspects Kan-

towski has explored this potential in the context of describing several programs

she and her colleagues have developed. (12, 13)

One program shows students a polygon, with anywhere from three to seven

sides. By manipulating the computer controls, the students can rotate, reflect, or

translate the polygon on.the screen to make it match the orientation of a second.

identical polygon. In the course of their manipulation, the students must tackle

such concepts as angle. parallel lines, and so on.
In the second program, the computer was programined to list, at certain points

during geometric proof, several categories from, which a student could choose the

type of information desired. For example, at each decision point, the student can

choose to see a relevant diagram or a list of relevant theorems and definitions. The

hints are provided by the computer, but the choice is the student's and he or she

must learn what kinds of information will help the most at various points in a proof

There is no doubt that high school geometry has been suffering through a pe-

riod of the doldrums. The research and development activities described in this

report have opened up the very real possibility that geometry will once again be-

come an exciting subject to learn and an exciting subject to teach.
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'Constructing proofs is a very difficult task for many of my
students. They can't even get started on most proofs. How can I
help" them to analyie a question or problem well enough to
discover a starting point for a proof?

On one level of learning, the role of proof is clear. it is the fundamental tool
tor extending the field of mathematics. Yet few secondary level students aspire
tube mathematicians. so educators have had to search elsew here to. define a role

lor proof in secondary school mathematics. In varying degrees since the time of

Luchd. proof has been touted ds a means to discipline the mind to think in an or-

derly fashion. as a N ehicle ;-or improving logical thinking, and as a stimulus to-
ward the kind of responsible. critical and reflectiv e thinking that should be the

mainstay of democratic life.
lbday's secondary school teachers are asking pressing questions about the role

of proof in the mathematics curriculum. Where, for example. should proof he
taught in the curriculum? How tied should it be to the teaching of geometry' I low

can %se motivate the many students we face who are reluctant to learn how to
constnict proofs? Do skills in proof-construction carry over to other mathemati-

cal thinking skills? Do they transfer to non-mathematical subject areas"
Research has shed some light on these issues, and this report reviews the re-

sults that have a direct bearing on the mathematics classroom and on the respon-

sibility of the mathematics teacher. That responsibility is threefold, to induce
students to appreciate the value Of proof. to teach them what a proof is. how to
folios% one, and how to distinguish proof from non-proof, and, to help student%

develop skills in proof construction,
In general terms, proof is the process of reasoning from a set of premise%

through a series of connected inferences to a conclusion, in such a vv ay that any

doubt about the conclusion must be referred back to the premises. 'rather than to

thc logical necessity of the inferences. In mathematics there are five major meth-

ods of prpof. da-ec t proof (starting with proposition 13, a chain of "If , then"
inferences arrives at proposition Q. so P implies Q). proof b) toe a f the contra-
pasitoe (showing that the negation of proposition Q implies the negation of
proposition P is equivalent to shoming P implies Q), redac do ad absurdum (as-

suming that P does not imply Q mill often produce a logical absurdity. thus as-

suring that P implies Q), p, oqf k enumeration (in certain cases it is possible to

prove a proposition by enumerating the instances it encompasses). finally, proqf

155



The Path to Proof

by existence isoin. Propositions assert the existence of a mathematical phenom-

enon or situation under certain conditions, and proof entails the construction of

that phenomenon or situation). ( 13) Besides these five methods of proof in math-

ematics, there are two methods of disproof: disproof by contradiction (to show
that under certain assumptions a proposition is not true, it is often possible to show

that the truth of the proposition w ould lead to a logical contradiction of one or

more of the assumptions) and disproqf tounterexampk (to disprove a propo-

sition it suffices to find one example that satisfies the conditions of the proposi-

tion but not its conclusion).
Each of these methods of proof and disproof appears in secondary level

Mathematics, yet mathematics teachers should take nothing for granted about their

students' understanding of the use of thesc methods or even about their accept-

ance of the need to use them. Discussions about each ofahese methods twpear in

(1) and (4). The book by Baxandall et at. (I) also contains many examples of the

use 9f these methods, especially in the contexts in which they appar in the upper

secondary grades and in the first years of college mathematics,

Students and Proof

Most students come neither quickly nor natur,ally to the use of mathematical

proof. The unrushed pace of cognitive development limits the ability of most

children.to reason hypothetically or deductively until they are between 13 afi'd 15

years of age. Even then, apparently, many have little to appeal to in their 'expe-

rience when they face mathematical proof. Williams surveyed eleventh graders

ttnd found that fewer than 30 percent exhibited any understanding of the meaning

of proof in mathematics. that approximately 60 percent were unwilling to argue,

for the sake of argument, from any hypothesis they considered false, and that there

was "no evidence that high school students understand that a mathematical state-

ment and its contrapositive are equivalent." (19, p. 166) (For example. the fol-

lowing two statements are equivalent, with the second the contrapositive of the

first: "If a four-sided figure is a rectangle, then its diagonals tire congruent," "If

the diagonals of a four-sided figure are not congruent. then it is not a rectan-

gle.") Obviously, then, many secondary students are limited by their cognitive

development, by their lack of prerequisite understanding, and by their lack of ex-

penepce. In order to understand why so many students have difficulty with proof,

it is essential to isolate developmental limitations add the ways in which they make

themselves known, to detei mine the nature of prerequisite understanding, and to

isolate those misconceptions about proof that arc more social in nature and are

due to inexperience,

Cognitive Development

For an extensive treatment of cognitive development we refer you to the chapter

"Individual Differences in Secondary School Mathematics The present chap-

ter is limited to the implications of development for children's abilities to under-
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stand and construct proofs. TO that end, it suffices to point out that during the period

between ages 13 and 15--earher for some children, later for otherschildren pass
from the stage balled by many developmental psychologists c(mcrete operational

thinking, when their thinking is almost completely tied to their perceptions, to the

stage of formal operational thinking, v, hen thej can begin to think hypotheti-
cally and deductively, to hold more than one variable in mind at a time, and to
think about their thinking. In one research study a group orsecondary students
was given the following exercise. "All successful scientists work hard. and Mr

Smith is a scientist who works hard. Can we say from this that Mr. Smith is a

successful scientist ?" About 25 percent of the fourteen-year-olds Av ho responded

to this question answered "yes,"and nearly 20 percent answered "no," but gave

a poor reamm for their "no" answer. (13) Commenting on this. Lovell remarked

that although it is not impossible for concrete operational jndivkluals to solve this

kind of exercise, it does not lend itself to imaging very easily that is. the set of

sLientists who %yolk hard but are not successful is never mentioned and an image

of that set does not arise very readily from a reading of the problem. Thus, the

exerose bet.onies very diffkult for students whose thinking is still tied to sensory

perception.
In several of its logic exercises the recent National Assessment of Educa-

tional Progress tNAEP) underscored the role of cognitive development in suc-

cessful deductiv e thinking by revealing that the jump in perfonnance between the
9-year-olds and the 13-y ear-olds tends to be much greater than the jump between
the 13-year-olds and the 17-year-okls. (3) In particular. on an examplesimilar in

structure to the one used by Lov ell in his experiment"Every flyer is crazy, Chris
Is crazy"a correet conclusion that there is not sufficient information to decide

whether Chris is a flyer was reached by 25, 51, and 58 percent. respectively, of

'he 9-, 13-, and 17-year-olds. It is noteworthy that so many of the 17-year-olds

in,)re than 40 percent-- were not able to dc_ace the appropriate answer.

Reys and Groums looked at one particular topic where many students are
challenged to understand a proof before they have developed to the stage of for-

mal operations. namely. division by zero. (15) One recommended way for teach-

ers to approach a question like "What is 6 divided by O?" is to remind students
of theclose relationship between multiplication and division: 4 Y 3 = 12 12

4 = 3. Thus, for a related pair of statements like 3 x 0 = 6 0= 6 4- 3,
tne same number, in this ease 2, fits in both squares. Since 0 x 0 = 6 4.--1 =

6 0 are related statements and since the left statement has no solution (0times

any number is 0). there is no solution for the right statement, either.

This IS the kind of reasoning students must understand in order to understand

why 6 , 0 = ? has no solution. In their testing and interviewingof fourth, sixth,

and eighth-graders, Reys and Grouws found that an understanding of such rea-

sonmgrequired a facility w ith translating back and forth from multiplication to

division and an understanding of zero as a number. Furthermore, the logic and

symbolism involved in the proof make cognitive development a factor the more
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cognitively mature students are, the greater are their chances of deducing that di-

vision by zeR has no solution.
Bell points out that a child's path to formal proof begins with early attempts

at making and establishing generalizations, Children can recognize patterns and

njationships, even extend and descrthe them but they cannot justify or deduce

them. (2) Often the generalizations are unreasonable. too. In the research study

described by Lovell. secondary level students were presented with a versionof

the famous, and unprown, Goldbach Conjecture: Every even number can be ex-

pressed as the sum of two prime numbers. The students were told to study the

following list:

2 = + I 10 = 5 + 5
4 = 3 + I 12 = 7 4- 5

6 = 3 + 3 14 = 7 + 7
8 --- 5 + 3 16 = 1 + 5
(and so on. to 16 instances concluding with 32 = 3 + 29)

They were then asked. "Do these facts show that every even number can be put

as the sum of two prime numbers?" Approximately '0 percent of the students in

the 14- to I5-year old range answered, in effect. "Yes, enough evidence," To

Lovell, the..e data implied that niany of the students in this age range have not

fully developed the deductive thinking skills that could prevent such hasty and

unexamined genetalizations. (13)
Oddly enough; although many secondary level students have a tendency to

jump too quickly from patterns to generalizitions, it is also common for adoles-

cents to ignore the conclusions they could draw' from counterexamples. Galbraith

reports a study in which students, most of whom were between 13 and 15 years

of age, were asked to evaluate a rule propmed by an imaginary student Brenda

for predicting which %%hole numbers have the property that the sum of their digits

are divisible by 7 (for example, 43, ;0, 383). (6) Brenda's rule was: -Every number

with this property can be tbund by adding 9 to the previous number. You start with

7." When the students were alerted to a counterexample to Brenda's rule (fbr ex-

ample. 59 has the property but 50 does not), approximately one-third of the stu-

dents did not see the significance of the counterexample in refuting Brenda ss rule.

As one student slut!: ,Could.be a freak accidentone in a million chance,"

In the years before children can fully take hold of formal proving skills. other

developmental lactors can affect their progress. For example, verbal and writing

skills have a bearing on proof skills. Lester remarks: "An examination of re-

search involving the logical-reasoning abilities of young children reveals that these

abilities may be superior to their ability to put an argument in written form."

p. 15) And Hoffer warns. Precise formulations may be thrust on students before

they are readybefore they have an opportunity to describe concepts themselves

and recognize the lack of precision in their statements." (8. p. 12)
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Levels of Prerequisite Concepts and Skills

Most students have little experience with deductive proof before high school

geometry. Even then. many lack the prerequisite skills and conceptual under-

standing that would permit them to uralerstand and use formal deductive proofs

Several-research stuclies have attempted to delineate those prerequisites for de-

.ductive,proof. and one result of those efforts is the van flick model of the levels

of mental development in geometry, a model named after the Dutch researchers

who First hypothesized it.
According to the model, all children progress through several levels of geo-

metne understanding, and the van Hides have claimed that a combination of time,

content, and teaching methods will carry each child from one level to the level

following it. As described by Hoffer (8), the proposed levels are:

1.evel 1. ,Recognilion, The student learns some vocabulary and recognizes

1 shape as a whole. For example, at this level a student mil recognize a

picture of a rectangle but usually won't be aware of many properties of

rectangles, such as parallel opposite sides.
Level 2. Analysis. The student analyzes properties of Figures. At this level

a student may realize that the opposite sides of a rectangle are parallel and

congruent. but will not yet notice howrectanglcs relate to squares or right

triangles.
Level 3. Ordering. The student can logically order 'geometric figures (fer

example, all squares are rectangles. but not all rectangles are squares). and

understands interrelationships between figures and the importance of ac-

curate definitions.
Deductive thinking skills are not fully developed at this level. Al-

though students at this level may be able to understand the relationship of

the nlass of squares to the class of rectangles, and the relationship of the

latter to the class of parallelograms, they may not be able to deduce vdy

the diagonals ola rectangle are congruent.
Wirszup has described how deductive thinking begins to take shape at

level 3. As students collect the visual properties or Various shapes, the

growing collection asks for organization, and that is tl',e start of deductive

thinking. (201
Level 4. Deduction. The student understands the significance of deduc-

tion and the role of postulates. theorems: and proof.

At this level students will be able to use postulates to prove statements

about rectangles and triangles, but this thinking may lack enough rigor for

them to understand why the postulates are necessary.
Level 5, Rigor. The student understands the importance of precision in

dealing with foundations, such as the collection of axioms and postulates

dr the foundation of Euclidean geometry. This is a level of sophisticated

thinking rarely reached by nigh school students.

150 '159



The Path to Proof

L:siskin and Senk conducted it study of several thousand high school geom-
etry students to determine vthat changes in van Hie le levels take place during the

year of geometry, , and to determine how well the van Hide levels of students en-
tcring high school geometry can predict the level of their proof skills at the end
ot their year in geometry. (17, 18) In order to make these determinations, the re-
searchers began by determining how many of the students fit the van Hick model
and, ol those who did, w hat their levels were. About three-quarters of the stu-
dents fit the model. Remarkably, , over one-half of those students were at Level 1
or below. The following are two examples of the questions asked.

Level 1:'Which of these are triangles?

V

(A) None of these are triangles.
(B) V only
(C) W9nIY
(Di W and X only
(B) .V and W only

Level 3. What do all rectangles have that some parallelograms do not have?

(A) opposite sides equal
(B) diagonals equal
(C) opposite sides parallel
(D) opposite angles equal
(E) none of (A)-(D)

The study deterimned that during the year of geometry, more than 50 percent
of the students at the low est level moved to Levels 2 or 3 but that about a third

of them remained at Level I. (18) Furthermore, the study found that after a full
year of a geometry caurse With proof, only about half of the students could do

more than simple proofs. (17) Finally, as a predictor of how well students would
do with proof after a year-long geometry course, the van Hick model proved to
be somewhat successful. In particular, it appears that if a student enters geometry

at Level 1 or below, , there is little chance of success with proof. Level 2 implies

a better than even chance of success, and Level 3 and above imply a good like-

lihood of success. (17, 18)
So far, the a n 1 lide model shows great promise as a tool for delineating the

skills and conceptual understanding that must precede students' work with for-
mal deductive proof. Furthe, research must sharpen the delineation and also identify

the classroom activ ities that ,ae it,iost appropriate for each level (Hoffer' article
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(8) proposes sonic geonicti) activities for each level and interested teachers can

refer to it.)
The reseamh cited so far has made it clear that many adolescents contend with

a variety of obstacles to the learning of the rules of formal proof:

an inability to think hypothetically or tO express their reasoning in writ-

ing.
a lack of clarity about the equivalence of a mathematical statement and

its contrapositive.
an unwillingness to acLept the conclusive evidence presented by a coun-

terexample.
a tendency to generalize too quickly from recognized patterns.

a lack of prerequisite skills and conceptual undei standing.

There are other obstacles. tio. In his research report. Galbraith noted a tend-

ency of many adolescents to, focus on only part of the statement of a proposition,

and tendencies as well to change the conditions of a proposition to suit the direc-

tion of their own thinking or even to be subjective in their assessment of a proof

("Maybe Brefida,didn't mean to say 'every'.") (6)
It is important for teachers to note that inexperience is also bound to affect a

young person's work with proof. For much of their lives, adolescents have at-

tempted to win arguments primarily on subjective grounds. Bell pointed to this

infliience of inexperience and the role of the teacher in dealing with it when he

said: "It follows , . that pupils will not use formal proof with appreciation of

its purpose until they are aware of the public status of knowledge and the value

of public verification. The most potent accelerator towards achievement of this is

likely to be cooperative, research-type activity by the class. In this, investigation

of a situation would.lead to different conjectures by different pupils, and the res-

olution of conflicts by arguments and evidence." (2. p.25)

The Teacher and Proof

Perhaps the most extensive attempt to create the kind of classroom experi-

ence which Ben recommends was Fawcett's classic teaching experiment during

the nineteen-thirties. (5) The experiment lasted two years and drew much of its

life from Fawcett's conviction that, with appropriate guidance, secondary stu-

dents can learn to think critically, reflectively, and deductively, and can learn to

apply that thinking both to mathematics and to nonmathematical areas as well. The

subject area was geometry, the teaching method mostly nondirective. Thc stu-

dents were frequently and consistently challenged to develop, through argument

and group agreement. their own system of geometric definitions, axioms and

theoremsin fact, their own textbook. For example, the following question is

typical of the teacher challenges to the class:
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Assume that angle a = angle a'. What are the resulting implications?

Note that the question doesn't lead the students to any particular implication.
When the students began to list implications, howeer, the teacher made them
examine, debateind justify each on the basis of pre, iousork, and then to in-
corporate the implications they derived into their textbook.

Fawcett's account of the experiment is the 13th yearbook of the National
Council of Teachers of Mathematics, The Nature of Proof. It is Nery readable and

interested teachers should refer to it for a complete picture of the experiment. At
the end of the two years the experimental students scored higher than students in
traditional classes on a state geometry examination and both the experimental
students and their parents claimed that the students' deductRe thinking had im-
prkwed in nonmathematical situations. Perhaps the most important outcome to
Fawcett, howeer, %as th z. proliferation in the experimental class of the behaN-
iors he considered characteristic vi students who understand proof and the alue
of proof and which Lan still set-% e as beacons to any teacher of mathemetics (5,
p. I 1) :

I. They will select thc significant words and phrases in any statements that
are important to them and ask that they be carefully defined.

2. They will require es, idence in support of any conclusions they are pressed
to accept.

3. They w ill analyze that eidence and distinguish fact from assumption.
4. They will recognize stated and unstated assumptions essential to the con-

clusions.
5. They will ealuate those assumptions, accepting some and rejecting oth-

ers.

6. They will ealuate thc arguments, accepting or rejecting the conclusions,
7. They will Lonstantly re-examine the assumptions which are behind their

beliefs and which guide their actions.

There are ways in w hich mathematics teachers can incorporate Fawcett's list
into their own teaLhing objectiNes without imesting 'a two-year commitment,
First, as much as possible, they should model the kind of reasoning they want from
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their students. In their study of ses enth-graders' logical reasoning skills. Gregory

and Osborne found a high correlation betw een the frequency of teachers' use of

conditional reasoning (e.g "If then" sentences) and the conditional reason-

ing skills of the students. (7)
Second. teachers should thmk aloud while attacking problems and construct-

ing proofs. They should also create opportunities for students to think aloud In

this way both teacher and student can examine the student's thinking--assump-

lions. use of evidence, the depth and comprehensiveness of criticism Fourof the

seven behaviors on Fawcett's list concern assumptions, and at least one research

study has made it apparent that the assumptions many students bringto formal proof

need airing and adjustment. In that study, reported by Lovell, attention was fo-

cused on the development of the concept of proof. When asked "What do we mean

by an hypothesis?", more than 20 percent of the students between the ages of 16

and 18 gme answers such as. an hypothesis is a true statenient: an untrue state-

ment, a proved statement, a statement that cannot be proved. (13) With assump-

tions like those it is no wonder so many students have trouble with formal proof!

Whether the topic for discussion is a particular mathematical proof or the process

of proof itself, students need to be made aware of their own assumptions and those

ot others. That can only be done through regular classroom discussions among

students. discussions that are guided by the teacher.

The theme of student involvement rills at the heart of a study by Libeskind

(12) The study centered on a short course in number theory for students from graces

9 through I I. Using study booklets and a sequence of mastery tests, the research-

ers guided the students through 25 hour-long sessions. The researchers' main fo-

cus was the effectiveness of the heuristic teaching of proof, whereby the teacher

kesn't just appeal ,to axioms or previous results in the course of developing aproof,

but shows why it is reasonable to start a particular proof in one way and not an-

other, how one knows the way to proceed from one step to the next, and what

alternative strategies there might be for developing a particular proof.

The researchers guaranteed students' involvement by asking them to suggest

what the next step in a particular proof might be. The students wrote their sug-

gestions in their notebooks and a step was adopted only if more than half of the

students suggested it. Furthermore, to discourage memorization the students were

required to wnte proofs in several forms: the traditional two-column form. a story

(sentence-paragraph) form, and a diagram form. So-called "flow proofs" are ex-

amples of a diagram form and interested teachers can refer to McMurray. ((4)

Nine students completed the course, in Libeskind's study and all reached the

mastery level. In particular. during the course the students developed the ability

to reproduce proofs even though they had been discouraged from memorizing, the

ability to recognize if a proof was valid, and the ability to apply the methods they

had learned to prove statements they had not seen before. Libeskind concluded

that the involvement of the students through the heuristic approach was central to

their success.
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Conclusion .

It should be ev ident by now that becoming proficient at mathematical proof
demands more than just a single skill. In fact. it appears to be the outgrowth of a
nuxed m,..t of skills. habits. and attitudes. encompassing alertness to assumptions,
listening to and evaluating arguments. recognizing patterns but also recognizing
when a pattern has not been extended to a firm proof, and both the ability and the
willingness to think hypothetically.

One other aspect of proof should not be ignored. A formal proof is usually a
series of statements, but skills in prov ing are born in the asking of questions
questions that allow one to analyze a concept oi situation, to examine it from var-
ious vantage points, and to gather data about it. In one series of experiments, sixth
and seventh grade. students were trained for a year, in a program of classroom
learning called the Inquiry Method. (16) The method was used mainly in science
lasses, where students were shown events that tended to cbntradict precon-
Leo. ed notions. suJi as the larger of two blocks of wood floating in a liquid while
the smaller piece sinks to the bottom. The students task was to ask the teacher
questions, answerable by "yes" or "no", until they felt they could explain why
everything in a particular expenment had happened the way it did. Five years later,
the researchers compared the Inquiry Method students with a comparable group
of students who had nut been exposed to the method. The inquiry -trained stu-
dents were significantly more analytical than the other students, and vere better
in mathematics. During interviews, the inquiry-train.2,1 students made the con
nection between the year's training and their later experience w ith proofs in ge-
ometry. As the researchers reported. "Apparently techniques suggested in the
strategy sesswns, such as thinking of a 'start, middle, and end' to an experiment.
getting 'all' the facts, or asking 'precise' questions, were the kinds of things to
which the students referred in the questionpaire that were internalized and re-
tained dunng the five years between the teaching regime and this investigation."
(16. p. 142)

Some researdiers see the inicrocomputer as a potential source of a similar kind

of inquiry training. To do geometric proof, for example, students must make a
.erics of decisions about the kinds of information they need. visual information,
known theorems and related results, etc. Researchers are investigating the effects
of buddina mto microcomputer programs the capacity to respond to student's
request for more information. In one project, for example, the computer was pro-
gnnimied to list it certain points dunng a geometnc proof, several categories from
which the student could choose the type of information desired, (9) The hints came
from the computer. but the direction of the hints canie from the student.

In a similar vein, Knst conducted a study with students in grades 11 and 12,
using , umculum designed tu be augmented by the programmable calculatol. One
of the major conclusions of the study was that calculators can contribute to build-
mg a bridge betwcen the formal proof of basic theorems and students: under-
standing and acceptance of those basic theorems. (10)
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The Path to Proof

From Fawcett's experiment in the 1930's to the use of calculators and micro-

computers. the path to formal proof has not changed for secondary school stu-

dents. What has changed is out picture of the path, which is clearer now than it

ever has been in its delineation of the skills that underlie formal proof and in the

portrayal of obstacles to learning formal proof. In particular. we have n clearer

picture of which obstacles are developmental in nature and which are not, and what

'strategies are available to teachers who face these obstacles in the teaching of

, mathematics.
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